

Math & Logic Help

Math & Logic Engine
for OPC Servers

Version 9

Math & Logic Help

Cyberlogic Technologies Inc. - 2 -

MATH & LOGIC HELP

For Cyberlogic OPC Servers

Version 9

Copyright © 1994-2017, Cyberlogic® Technologies Inc. All rights reserved.

This document and its contents are protected by all applicable copyright, trademark and patent laws and
international treaties. No part of this document may be copied, reproduced, stored in a retrieval system or
transmitted by any means, electronic, mechanical, photocopying, recording or otherwise, without the express
written permission of Cyberlogic Technologies Inc. This document is subject to change without notice, and does
not necessarily reflect all aspects of the mentioned products or services, their performance or applications.
Cyberlogic Technologies Inc. is not responsible for any errors or omissions in this presentation. Cyberlogic
Technologies Inc. makes no express or implied warranties or representations with respect to the contents of
this document. No copyright, trademark or patent liability or other liability for any damages is assumed by
Cyberlogic Technologies Inc. with respect to the use of the information contained herein by any other party.

Cyberlogic®, DHX®, MBX®, WinConX® and Intelligent • Powerful • Reliable® are registered trademarks and
DirectAccess™, OPC Crosslink™, OPC Datacenter™, DevNet™ and C-logic™ are trademarks of Cyberlogic
Technologies Inc. All other trademarks and registered trademarks belong to their respective owners.

Document last revision date May 5, 2017

Math & Logic Help

Cyberlogic Technologies Inc. - 3 -

TABLE OF CONTENTS

Introduction .. 7
Compatibility and Compliance ... 8

What Should I Do Next?.. 9
Learn How Math & Logic Works .. 9
Read a Quick-Start Guide ... 9
Get Detailed Information on the Configuration Editors .. 9
Verify That It’s Working or Troubleshoot a Problem .. 9
Print a Copy of This Document ... 9
Contact Technical Support ... 9

Theory of Operation ..10
Math & Logic .. 10
Main Server Features ... 14

Quick Start Guide ..17
Creating a Math & Logic Device .. 18
Creating a Math & Logic Data Item ... 22
Editing the Math & Logic Program ... 24
Saving the Configuration and Updating the Server ... 40
Verifying Your Configuration... 41

Configuration Editor Reference ..47
Address Space .. 48

Device Folders ... 48
Math & Logic Devices ... 51
Folders ... 57
Math & Logic Data Items .. 60
Math & Logic Program Types .. 68
Math & Logic Editor .. 78

Conversions .. 88
Simulation Signals ... 88
Alarm Definitions ... 89
Network Connections ... 89
Database Operations ... 89
OPC Crosslinks .. 90
Saving and Undoing Configuration Changes ... 90
Configuration Import/Export .. 90
Editor Options ... 91

Validation and Troubleshooting ..92
Data Monitor .. 92
Cyberlogic OPC Client .. 92
Status Items ... 92

Math & Logic Status Item Definitions ... 93
Debugging Aids ... 99

Appendix A: C-logic Language Reference .. 102
Comments ... 103
Constants .. 104

Integer Constants ... 104
Floating Point Constants .. 106
String Constants ... 106

Math & Logic Help

Cyberlogic Technologies Inc. - 4 -

Predefined Constants .. 106
Local Declarations .. 108

Constant Declarations ... 108
Data Item Declarations .. 108
Typed, Untyped and Public Variable Declarations ... 110
Date & Time Variable Declarations ... 115
Standard Variable Properties .. 116

Expressions ... 117
Arithmetic .. 118
Relational ... 118
Logical ... 119
Bitwise ... 119
Operator Precedence and Associativity .. 120

Statements .. 120
Conditional Branch (If-Else) Statements .. 121
Assignment (=) Statements ... 122
Return Statements .. 123

Math Functions .. 124
Abs .. 125
Acos .. 126
Asin ... 127
Atan .. 128
Ceil .. 129
Cos .. 130
Exp .. 131
Floor .. 132
IsFiniteNumber ... 133
IsValidNumber .. 134
Ln ... 135
Log .. 136
Max ... 137
Min .. 138
Pow ... 139
Rand ... 140
Round .. 141
Sin .. 142
Sqrt ... 143
Tan ... 144

String Functions ... 145
Compare .. 146
Concat ... 147
Contains .. 148
EndOf .. 149
EndsWith ... 150
Format ... 151
IndexOf ... 152
Insert .. 153
Length ... 154
Like ... 155
PadEnd .. 157
PadStart ... 158
Remove ... 159
Replace .. 160

Math & Logic Help

Cyberlogic Technologies Inc. - 5 -

StartOf ... 161
StartsWith .. 162
Substring ... 163
ToLower .. 164
ToNumber .. 165
ToString ... 167
ToUpper ... 168
Trim .. 169
TrimEnd ... 170
TrimStart ... 171

Bitwise Functions ... 172
GetBitField ... 173
SAR ... 174
SHL ... 175
SHR ... 176

Date & Time Functions ... 177
AddSeconds ... 178
FormatDate .. 179
FormatTime .. 180
GetTimeZoneOffset ... 181
TimeNow ... 182

Variable Properties Functions .. 183
GetErrorString .. 184
IsErrorFAILURE ... 185
IsErrorSUCCESS .. 186
IsQualityBAD .. 187
IsQualityGOOD ... 188
IsQualityUNCERTAIN ... 189
QualityLimitField ... 190
QualityStatusCode ... 191

Other Functions ... 192
ArrayBounds ... 193
ArrayDimElements .. 194
DebugOutput .. 195
GetFixedInterval ... 196
IndexSort ... 197
IsArray ... 199
SetFixedInterval.. 200
Sort ... 201

Appendix B: OPC Quality Flags .. 202
The Quality Bit Field ... 202
The Substatus Bit Field ... 203
The Limit Bit Field .. 205

Appendix C: Format Specification Fields .. 206
Flag Directives ... 206
Width Specification ... 207
Precision Specification .. 208
Size and Distance Specification .. 209
Type Field Characters ... 211

Appendix D: Sample Programs .. 213
ABC to abc Sample Program .. 213
Maintenance Time Tracking Sample Program .. 214

Math & Logic Help

Cyberlogic Technologies Inc. - 6 -

Rank Machine Performance Sample Program .. 216
Linear Conversion Sample Program .. 217
Square Root Conversion Sample Program ... 218
Array to Date & Time Sample Program ... 219
Time in Your Time Zone #1 Sample Program ... 219
Using Debug Outputs Sample Program ... 220
Two Sines Sample Program ... 221

Math & Logic Help

Cyberlogic Technologies Inc. - 7 -

INTRODUCTION

The Cyberlogic OPC Server provides OPC Data Access, Alarms & Events and XML Data
Access functions. Its modular structure supports a variety of industrial devices and
communication networks. As a result, the server maintains a set of common features, but
has the flexibility to allow the addition of optional features as required for specific
applications.

Math & Logic is one of these optional features. With it, you can create mathematical or
logical functions that can operate on any data items that are available to the OPC server.
The results of the functions are available as OPC data items to any attached OPC client.
The full-featured Math & Logic is included with the following Cyberlogic products:

 DHX OPC Premier Suite

 MBX OPC Premier Suite

 OPC Crosslink Premier Suite

 OPC Datacenter Premier Suite

 DHX OPC Enterprise Suite

 MBX OPC Enterprise Suite

 OPC Crosslink Enterprise Suite

Note
This document includes only the information that is specific to the Math & Logic
feature. For information on the common features of the Cyberlogic OPC Server, refer to
the Cyberlogic OPC Server Help.

Pre-Programmed and Demo Math & Logic Items

The Cyberlogic OPC products that do not include the full-featured Math & Logic do have
a limited Math & Logic capability. There are two parts to this:

You can configure Math & Logic data items that use pre-programmed trigger and switch
applets. With these applets, you don’t write any programs. You simply configure the
applet through a dialog, and the program code is then automatically generated. The
generated code cannot be modified, but it will run unrestricted. You will find these
applets very useful as enable or trigger signals.

You can also create Math & Logic data items that use custom programs, but you can run
them only in demo mode. This means that they will run only for the first two weeks after
the software is installed, and after that will run only for two hours after the system is re-
booted. This allows you to try out the Math & Logic feature, but you should not use
these demo-mode programs in your application.

Note
The names of Math & Logic data items that run in demo mode are shown in the
Address Space tree in a different font color, to distinguish them from data items that
are fully functional. In most systems, they will use a blue font instead of the black font
that other data items use. However, these colors are taken from the Windows system
colors and may be different on your system.

Cyberlogic_OPC_Server_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 8 -

The Math & Logic Program Types section has complete information on the pre-
programmed triggers and switches.

Compatibility and Compliance

Math & Logic is a feature of Cyberlogic’s family of OPC products. The Cyberlogic OPC
Server can provide data to any OPC Foundation compliant client from any supplier.

Cyberlogic OPC products provide full compliance with the OPC Foundation specifications
for:

 Data Access 3.0, 2.05a and 1.0a

 Alarms & Events 1.1

 XML Data Access 1.0

 Data Access Automation 2.02

These products are tested for compliance to the OPC specifications using the latest test
software from the OPC Foundation. All Cyberlogic OPC products are certified for
compliance by the OPC Foundation's Independent Testing Laboratory. In addition, they
are tested annually for interoperability with other OPC products at the OPC Foundation’s
Interoperability Workshops.

Math & Logic Help

Cyberlogic Technologies Inc. - 9 -

WHAT SHOULD I DO NEXT?

The links below will take you directly to the section of this manual that contains the
information you need to configure, use and troubleshoot Math & Logic.

This document describes only the features specific to Math & Logic. For information on
the common features of the Cyberlogic OPC Server, refer to the Cyberlogic OPC Server
Help.

Learn How Math & Logic Works

If you are not familiar with the way that Math & Logic performs its operations and
provides results to OPC clients, you should begin by reading the Theory of Operation.

Read a Quick-Start Guide

First-time users of Math & Logic will want to refer to the Quick Start Guide for a step-by-
step walk through a typical configuration session.

Get Detailed Information on the Configuration Editors

Experienced users who want specific information on features of the configuration editors
will find it in the Configuration Editor Reference section.

Verify That It’s Working or Troubleshoot a Problem

If you have already configured the server, you should verify that it operates as expected.
Refer to the Validation and Troubleshooting section for assistance. In case of runtime
problems, this section also provides problem-solving hints.

Print a Copy of This Document

The content of this document is also provided in PDF format. Use the Adobe Reader

program to view and print the PDF file.

Contact Technical Support

To obtain support information, open the Windows Start menu and go to Cyberlogic
Suites, and then select Product Information.

Cyberlogic_OPC_Server_Help.pdf
Cyberlogic_OPC_Server_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 10 -

THEORY OF OPERATION

This section will familiarize you with the main features of the Cyberlogic OPC Server as
they relate to Math & Logic. Refer to the Cyberlogic OPC Server Help for a full discussion
of the common features of the Cyberlogic OPC Server. If you are new to OPC or the
Cyberlogic OPC Server, we strongly recommend that you read the OPC Tutorial first. You
will find it in the Help section of your product installation.

The basic function of an OPC server is illustrated in the figure above. The server obtains
data from field components and presents it, in a standard way, to OPC client
applications. Typically, these field components are PLCs or similar devices. More
advanced servers will also allow you to process the incoming raw data prior to making it
available to the client applications.

Math & Logic

Math & Logic is an optional feature for Cyberlogic's OPC Server, which allows you to
write programs in the C-logic™ programming language. These programs can include
complex mathematical and logical functions that operate on one or more data items. The
results appear as data items that are available to the OPC clients.

Cyberlogic_OPC_Server_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 11 -

A typical program associated with a Math & Logic data item

Advantages of Server-Based Math & Logic

Basic OPC servers get data from field devices, such as PLCs, and present it to OPC client
software. They may provide a limited ability to convert the values into engineering units,
and may also have some ability to simulate the data. If you need to do anything more
complex than those simple functions, the client software will have to handle it.

That may be acceptable for simple systems. But if your needs require you to program
numerous clients to perform the same calculations, that approach quickly becomes
inefficient and error-prone. Furthermore, it limits your choice of client software to high-
end packages that include the needed Math & Logic functions.

A far better approach is to use Cyberlogic's Math & Logic to process the data in the OPC
server. This has several advantages:

 You program the calculations and logical functions once for the entire
system.

Math & Logic Help

Cyberlogic Technologies Inc. - 12 -

 The programs are located and maintained on a single system for easy
maintenance. All clients will receive the same data.

 A single Math & Logic engine for all of your users means that you have only
one editor and one programming language to learn.

 You will not need to purchase client software to perform the Math & Logic
functions.

 Your client software options are not limited to only those packages that
include Math & Logic functions.

Math & Logic Applications

Math & Logic provides you with a general programming language, C-logic, that gives you
the freedom to manipulate the data as you wish. This opens many possibilities.

Conversion

Most OPC servers have simple linear and square-root conversion functions built-in. With
Math & Logic, you can create much more complex conversions that involve:

 Logarithmic, exponential, stepwise or other types of functions

 Clipping and range limiting

 Conversions that can be controlled by data items, allowing you to adjust
their parameters in real time

Simulation

Not only can you generate a nearly limitless variety of waveforms, but you have a broad
range of control over them. Possibilities include:

 Two sine waves, with an adjustable phase difference

 Two square waves in quadrature to each other, to simulate an encoder

Alarms

Instead of simple alarms that trigger when a value is outside of predetermined limits, you
can program alarms for much more complex scenarios:

 A process with temperature requirements that vary depending on the
pressure, so you want an alarm when the combination is out of limits

 A tank's fluid level is dropping too rapidly, even if it is still within limits

 A flow rate with limits that vary depending on the current step in the process

Smoothing and Averaging

You can write programs that will minimize the effect of inconsistencies in sensor readings
or other measurements:

 Average the readings of two pressure transducers

Math & Logic Help

Cyberlogic Technologies Inc. - 13 -

 Maintain a moving average of the last ten cycle times

 Apply exponential smoothing to a temperature reading

Ranking, Choosing and Voting

The comparison and logical functions allow you to program complex decisions:

 Rank four machines in order of their cycle times

 Identify which of three lines is the closest to going down for scheduled
maintenance

 Turn off the heater when three out of four probes reach the temperature set
point

Interaction with Other Features

You can write programs to control other features of the Cyberlogic OPC Server:

 Trigger Crosslink transfers

 Enable and disable dynamic Access Paths

 Execute other programs

Unique and Advanced Features of Cyberlogic's Math & Logic

Cyberlogic's Math & Logic implementation includes many advanced features, some of
which are unique to Cyberlogic.

Editing Features

 Familiar programming syntax, similar to the C programming language

 Program statements are color-coded, using configurable colors

 Browse window for easy insertion of OPC data item variables

Performance and Diagnostics

 Programs are compiled so they can execute in microseconds, far faster than
is possible with interpreted code

 User can compile all programs with a single mouse click

 Compiler can detect program errors at compile time

 Status tags available at runtime include: detailed runtime error information,
execution time, number of program executions

Power

 Extensive set of preprogrammed functions

 Each program can produce multiple outputs

 A program can dynamically create data items in the address space, which
can be used as inputs, outputs or both

Math & Logic Help

Cyberlogic Technologies Inc. - 14 -

 Program execution triggered on input data change, by a trigger item, at a
fixed interval, or as scheduled by the program itself

 Group execution criteria can be overridden for individual programs

 Execution can be enabled and disabled dynamically if there are no
subscriptions to the data item

 Math & Logic data items behave like all other data items: can be simulated,
used with conversions and alarms, and can be used in other Math & Logic
programs

Flexibility

 Broad selection of data types from 1 to 64 bits, including Boolean, signed
and unsigned integer, floating point, and string, as well as OPC UA data
types

 Support for arrays

 Works with DirectAccess data

 Program inputs can override default deadbands and sampling rates with
individual settings

Continue with Main Server Features for a general description of how Math & Logic fits
into the server configuration. For an example of how to configure this feature, skip to the
Quick Start Guide. Refer to Appendix A: C-logic Language Reference for a complete guide
to the C-logic language.

Main Server Features

We will now look at the main features of the Cyberlogic OPC Server, as they relate to
Math & Logic.

When you open the Cyberlogic OPC Server Configuration editor, you will find several
main trees. These trees represent the main areas that you will configure. Note that some
are for premium features that may not be part of the product you have installed, so they
will not appear in your configuration. The trees are:

Math & Logic Help

Cyberlogic Technologies Inc. - 15 -

Address Space Tree

This is where you actually configure Math & Logic. To do this, you will create Math &
Logic data items and organize these into Math & Logic Devices. You will then write a
program for each data item, which will calculate the value that will be assigned to it. For
detailed information on how to edit this tree, refer to the Configuration Editor Reference.

Math & Logic Devices

Math & Logic devices group related data items in your configuration. All data items under
a device share some common controls and default settings. For example, the device
settings specify when the group is enabled, and the default conditions under which the
logic will be run. You can choose to enable logic execution, disable it, or use the value of
a data item to control the enable and disable. When execution is enabled, you can
specify that programs should run when the input data changes, at a fixed interval, or
when triggered by a change in the value of a specified data item. Each data item in the
device can use these default settings, or define its own.

Math & Logic Data Items

You program the Math & Logic operation in a data item. When the program runs, its
result will be available to clients as the value of the data item. It is also possible for a
single program to have multiple output values. Refer to Data Item Declarations for more
information on how to do this.

Conversions Tree

The Conversions Tree is optional. In it, you can define formulas that can be used to
convert raw data values obtained from the field equipment into a form that is more
useful to the client. For example, you can change a transducer’s voltage value into a
pressure value in psi. You can also apply conversions to Math & Logic data items. This
allows you to do the calculations on the raw values, and then use a conversion to
present the result in engineering units. Refer to the Cyberlogic OPC Server Help for a full
discussion of this tree.

Simulation Signals Tree

This tree is also optional. If you want to be able to use simulated data item values
instead of real values, you can create various types of simulated data functions in this
tree. Simulations are often useful for troubleshooting client applications. You might want
to simulate a Math & Logic data item initially, while you work on its program. Refer to the
Cyberlogic OPC Server Help for a full discussion of this tree.

Alarm Definitions Tree

You will use this optional tree to interface to OPC Alarms & Events clients. This tree
allows you to define the desired alarm conditions and specify what information should be
passed as they occur and clear. When you apply these to a Math & Logic data item, the
result of the calculation will determine what alarm is triggered. Refer to the Cyberlogic
OPC Server Help for a full discussion of this tree.

Cyberlogic_OPC_Server_Help.pdf
Cyberlogic_OPC_Server_Help.pdf
Cyberlogic_OPC_Server_Help.pdf
Cyberlogic_OPC_Server_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 16 -

Network Connections Tree

This tree is where you configure communication to OPC servers, PLCs and other data
sources. You will select the networks and interface devices you will use, and configure
each of the field components as nodes on those networks. This tree is not directly
involved in Math & Logic configuration. However, the network nodes you define here
typically provide the input data for the Math & Logic calculations. Refer to the driver
agent help files for more information.

Database Operations Tree

The Database Operations Tree is part of the logging feature, which is a premium feature.
If this tree is in your product, you can use it to configure databases and data logging
operations. Refer to the Data Logger Help for a full discussion of this tree.

OPC Crosslinks Tree

The OPC Crosslinks Tree is part of OPC Crosslink, which is a premium feature. If this tree
is in your product, you can use it to configure data transfers between PLCs, between OPC
servers and between PLCs and OPC servers. Refer to the OPC Crosslink Help for a full
discussion of this tree.

Data_Logger_Help.pdf
OPC_Crosslink_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 17 -

QUICK START GUIDE

Before you can use the OPC server, you must configure it by using the OPC Server
Configuration Editor. Math & Logic users must configure the Address Space tree. In
addition, users who want to obtain data from PLCs or other OPC servers must configure
the Network Connections tree. The remaining trees (Conversions, Simulation Signals,
Alarm Definitions and OPC Crosslinks) are optional features used by some systems.

Sample Configuration Files

The default installation of all Cyberlogic OPC Server Suites includes a set of sample
configuration files. These samples will help you to understand how to configure the OPC
server for your project. In addition, the OPC Math & Logic sample provides you with
numerous sample programs that you can modify and use in your system.

To open a sample configuration file from the OPC Server Configuration Editor, open the
File menu and then select Open Sample… .

A browse window will open to allow you to select the configuration file you want. The
available choices will depend on which OPC products you have installed.

The default location of the files is:

C:\Program Files\Common Files\Cyberlogic Shared\OPC.

Step-By-Step Example

This section shows how to configure the Address Space tree for Math & Logic. It does
not cover any of the other parts of the configuration. For a step-by-step example of how
to configure a complete OPC server, refer to the Cyberlogic OPC Server Help.

You should use this example only as a guideline of how to configure the most common
features. For detailed information on all of the Math & Logic features, refer to the

Cyberlogic_OPC_Server_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 18 -

Configuration Editor Reference. The software also includes a configuration file with a set
of sample programs. These will help you to understand how the various functions work.
They will also give you ideas about what you can do with C-logic, and they can be
modified and used in creating your own programs.

For this example, we will assume we have a process for which a temperature
measurement is critical. We have three temperature transducers and want to report the
average of their readings. However, if a transducer fails, we will average only the values
from the good transducers.

The procedure is divided into several sections:

 Creating a Math & Logic Device

 Creating a Math & Logic Data Item

 Editing the Math & Logic Program

 Saving the Configuration and Updating the Server

 Verifying Your Configuration

We will begin with Creating a Math & Logic Device.

Creating a Math & Logic Device

The Math & Logic device groups Math & Logic data items that share some controls and
default settings. For example, a device allows you to enable or disable its data items, or
to specify a data item that will control the enable status. It also allows you to specify the
default conditions under which the data items' programs will execute.

1. To start the editor from the Windows Start menu, go to Cyberlogic Suites, then
open the Configuration sub-menu, and then select OPC Server.

If you are running the Cyberlogic OPC Server Configuration Editor for the first time,
the editor will prompt you for a configuration file. Click the dialog box's Create
New... button to start with an empty configuration.

Math & Logic Help

Cyberlogic Technologies Inc. - 19 -

You will see the above screen. For this exercise, we will assume that the three
temperature sensors have already been configured. If you want to read about how
to do that, refer to the Cyberlogic OPC Server Help.

2. Right-click on the Address Space tree, then select New from the context menu,
and then Device and finally Math & Logic.

The editor will create a device and open it for editing.

Cyberlogic_OPC_Server_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 20 -

3. Select the General tab and enter Process Monitoring in the Name field.

4. In the Device Logic Enable section, select Enable.

This will keep the programs for all of the data items in the device enabled to run.

5. Select the Settings tab.

Math & Logic Help

Cyberlogic Technologies Inc. - 21 -

6. In the Run Logic section, check On Data Change.

This will cause the program to calculate the average temperature whenever there is
a change in any of the sensor values.

7. Uncheck Use Fixed Interval and Triggered.

8. Click Apply.

Next, go to Creating a Math & Logic Data Item.

Math & Logic Help

Cyberlogic Technologies Inc. - 22 -

Creating a Math & Logic Data Item

The Math & Logic data item contains the actual program you want to execute, and
reports the result as the value of the data item. The data item editor also allows you to
modify the enable criteria and override the run criteria for the program.

1. Right-click on the Process Monitoring Math & Logic device, then select New from
the context menu, and then select Data Item.

The editor will create a data item and open it for editing.

Math & Logic Help

Cyberlogic Technologies Inc. - 23 -

2. Select the General tab and enter OvenTemperature in the Name field.

Notice the red icon. This indicates that there is no valid compiled program for this
data item.

Math & Logic Help

Cyberlogic Technologies Inc. - 24 -

3. Select the Program tab, and then click the Edit... button.

The Math & Logic Editor will open.

Next, go to Editing the Math & Logic Program.

Editing the Math & Logic Program

The Math & Logic Editor allows you to create, edit and compile your programs using
Cyberlogic's C-logic programming language. (Refer to Appendix A: C-logic Language

Math & Logic Help

Cyberlogic Technologies Inc. - 25 -

Reference for detailed information on programming in C-logic.) Each program is part of a
Math & Logic data item, and so the editor is launched from within the data item.

For this example, we will need three temperature sensor inputs, which we assume have
already been configured as data items obtained from a PLC.

We will now create the program shown below.

ITEM Temp1 ("Main Process Control.Oven Temp 1");

ITEM Temp2 ("Main Process Control.Oven Temp 2");

ITEM Temp3 ("Main Process Control.Oven Temp 3");

double varAvg;

int varCount;

varAvg = 0;

varCount = 0;

// Verify that at least one sensor value is good

if(!IsQualityGOOD(temp1) && !IsQualityGOOD(temp2) &&

!IsQualityGOOD(temp3))

{

 // Report the sensor failure and exit

 varAvg.Quality = QUALITY_SENSOR_FAILURE;

}

else

{

 // Use only good sensors for the average

if(IsQualityGOOD(Temp1))

{

 varAvg = varAvg+Temp1;

 varCount = varCount+1;

}

if(IsQualityGOOD(Temp2))

{

 varAvg = varAvg+Temp2;

 varCount = varCount+1;

}

if(IsQualityGOOD(Temp3))

{

 varAvg = varAvg+Temp3;

 varCount = varCount+1;

}

// Calculate the average temperature

varAvg = varAvg/varCount;

}

// Return the new temperature value

return varAvg;

Note
It is possible to simply type the program in the Code View pane just as it is shown.
Instead, we will use the editor's built-in tools to demonstrate how they can help in
creating your program.

Math & Logic Help

Cyberlogic Technologies Inc. - 26 -

1. Go to the Expressions ribbon, and click on Add Items to open the Add Items
pane.

2. Click on Click here to browse.

The editor will populate the browser tree with all items in the server's Address Space.

Math & Logic Help

Cyberlogic Technologies Inc. - 27 -

3. Open the Address Space items to display a tree showing the available data items.
Notice that this includes status and DirectAccess items.

The data items we need have been configured as Oven Temp 1, Oven Temp 2 and
Oven Temp 3 in the Main Process Control PLC.

4. Select Oven Temp 1 to open its OPC Properties editing fields.

5. In the Item Name field, enter Temp1. This is the name the program will use for
this data item.

6. Click Add Item.

The item declaration will be added to the program.

Math & Logic Help

Cyberlogic Technologies Inc. - 28 -

7. Repeat the preceding steps for the other data items, calling them Temp2 and
Temp3.

The additional items appear in reverse order, because the editor always inserts new
items at the top of the program.

Math & Logic Help

Cyberlogic Technologies Inc. - 29 -

8. From the Variables group, select double.

9. The editor will begin a VAR declaration statement. Complete it by typing varAvg; in
the editing window.

10. Repeat the process to enter the declaration int varCount; on the next line.

Math & Logic Help

Cyberlogic Technologies Inc. - 30 -

11. Add two lines with the following assignment statements:

varAvg = 0;
varCount = 0;

These lines will initialize the two variables each time the program runs.

12. Type // to add a comment to your code. The double-slash and anything that follows
it on the same line is considered to be a comment. The compiler will ignore it.

13. In the Statements group, click if to insert an if() structure.

Math & Logic Help

Cyberlogic Technologies Inc. - 31 -

14. Place the cursor within the if() parentheses, then open the Operators menu and
select !, which is the logical NOT operator.

Note
Click the expand button at the lower right corner of any of the groups to pop up a list
of items available in that group, along with an explanation of their meaning and a
sample syntax.

15. Go to the Functions ribbon and select IsQualityGOOD from the OPC Quality
group.

Math & Logic Help

Cyberlogic Technologies Inc. - 32 -

16. The default argument for the function is VariableName. This is a hint to remind you
to type the name of an OPC variable in its place. In this case, type Temp1.

17. Use the Operators menu to enter the logical AND operator, && into the expression.

Math & Logic Help

Cyberlogic Technologies Inc. - 33 -

18. Repeat the preceding steps to complete the expression:

!IsQualityGOOD(Temp1) && !IsQualityGOOD(Temp2) &&

!IsQualityGOOD(Temp3)

Note
The ribbon tools will help you to enter the expressions quickly and accurately. As you
become more familiar with the editor, you may prefer to simply type the functions and
operators directly.

Math & Logic Help

Cyberlogic Technologies Inc. - 34 -

19. Place the cursor between the braces and type varAvg. (being sure to include the
period). You will see a context menu appear, displaying the available properties of
the object. Select Quality.

20. Type the assignment operator, =, then go to the Expressions ribbon and select
QUALITY_SENSOR_FAILURE from the Constants group.

Note
If a variable that is returned from a program has a BAD quality, the value previously
assigned to this variable becomes irrelevant.

21. Type a semicolon to complete the statement, then insert a comment line above the
statement.

The logic up to this point checks to see if none of the three sensors have good
quality data, and, if so, reports a sensor failure. (Refer to Appendix B: OPC Quality
Flags for information about OPC data quality.)

Next, we will calculate the average of the good sensor readings.

Math & Logic Help

Cyberlogic Technologies Inc. - 35 -

22. In the Statements group, select else.

23. Use the techniques already discussed to enter the statements:

// Use only good sensors for the average

if(IsQualityGOOD(Temp1))

{

varAvg = varAvg+Temp1;

varCount = varCount+1;

}

Math & Logic Help

Cyberlogic Technologies Inc. - 36 -

24. Go to the Home ribbon's Clipboard group. Use the Copy and Paste tools to make
two additional copies of the preceding if statement.

25. Modify the copies to refer to Temp2 and Temp3, respectively.

Now we have the sum of the values from the good sensors. Next, we will calculate
the average.

Math & Logic Help

Cyberlogic Technologies Inc. - 37 -

26. Within the scope of the else, type the expression:

varAvg = varAvg/varCount;

Math & Logic Help

Cyberlogic Technologies Inc. - 38 -

27. Go to the Expressions ribbon, Statements group, and select return.

28. Type varAvg as the value to be returned.

This completes the program editing. The last step is to compile the program.

Math & Logic Help

Cyberlogic Technologies Inc. - 39 -

29. On the Home ribbon, go to the Logic group.

30. Click the Compile button.

The editor will save the program, and then compile it into the binary form that is
executed by the server. If the compiler finds any errors, it will display them in the
Status pane.

31. Click the Save & Update Server button to save the modified configuration and load
it to the OPC server for execution.

Note
It is not mandatory to perform the Save & Update Server operation within the Math &
Logic editor. If you prefer, you can close the editor and do additional edits to your
server configuration, and then Save & Update Server from the main menu or toolbar.

Math & Logic Help

Cyberlogic Technologies Inc. - 40 -

32. Close the Math & Logic Editor.

You will return to the OPC Server Configuration Editor.

Note
If you make changes to the program, and leave the Math & Logic editor without
compiling it, the program in the Logic window will be shown on a red background. The
data item icon in the address space tree will also turn red. This is to remind you, that
there is no executable code associated with your program.

33. If you did not Save & Update Server within the Math & Logic editor, click Apply to
save the program as part of the data item.

To continue, go to Saving the Configuration and Updating the Server.

Saving the Configuration and Updating the Server

If you did not Save & Update Server within the Math & Logic editor, you must do so
before the server will be able to execute the program.

Math & Logic Help

Cyberlogic Technologies Inc. - 41 -

Caution!
After you edit the configuration, you must open the File menu and select Save &
Update Server, or click the Save & Update Server toolbar button, for the changes
you have made to take effect. Otherwise, the server will still be running with the old
configuration.

1. Open the File menu and select Save & Update Server.

2. Be sure to repeat this step every time you change the configuration.

Your Math & Logic configuration is complete.

The next step, Verifying Your Configuration, will introduce you to the diagnostic features
of the product.

Verifying Your Configuration

The Cyberlogic OPC Server Configuration Editor includes a built-in utility called Data
Monitor. This diagnostic tool allows you to view the status and values for data items in
the currently selected folder.

To test the Math & Logic program, we will simulate the three temperature inputs and use
Data Monitor to set their values. We will then check the value of the Math & Logic data
item to verify that it is correct.

Math & Logic Help

Cyberlogic Technologies Inc. - 42 -

1. Select the device that contains the temperature sensors. In the example shown, it is
called Main Process Control.

2. On the General tab, check Simulate.

3. Click Apply.

The icons for the temperature sensors will turn yellow to indicate that their values
are simulated.

4. On the toolbar, click the button to save and update the server.

Math & Logic Help

Cyberlogic Technologies Inc. - 43 -

5. Right-click on the Main Process Control device and select Data Monitor from the
context menu.

The Data Monitor pane will open to show the values of the sensors, along with status
information.

Math & Logic Help

Cyberlogic Technologies Inc. - 44 -

Notice that the Substatus for the three Oven Temp values is Local Override. This
indicates that the values are simulated.

6. Right-click on Oven Temp 3 and select Write Item from the context menu.

7. In the Write Item dialog box, enter a value for the item, and then click OK.

Math & Logic Help

Cyberlogic Technologies Inc. - 45 -

8. Verify that the value was written as expected, then repeat the procedure to set
values for the other two sensors.

9. Click on the Process Monitoring Math & Logic device.

The Data Monitor pane will show the value of the OvenTemperature Math & Logic
data item, along with status information.

Math & Logic Help

Cyberlogic Technologies Inc. - 46 -

10. Verify that the value of OvenTemperature is the average of the three simulated
temperature sensor values.

11. Select Main Process Control again and change the temperature sensor values.
When you return to viewing Process Monitoring, you should see a corresponding
change in the OvenTemperature value.

This concludes the Quick-Start Guide. To learn more about the features of the server,
refer to the Theory of Operation section. To learn more about configuration, refer to the
Configuration Editor Reference. To learn more about verifying your configuration and
troubleshooting tools, refer to the Cyberlogic OPC Server Help.

Cyberlogic_OPC_Server_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 47 -

CONFIGURATION EDITOR REFERENCE

Before you can use the OPC server, you must configure it by using the OPC Server
Configuration Editor. Math & Logic users must configure the Address Space tree. In
addition, users who want to obtain data from PLCs or other OPC servers must configure
the Network Connections tree. The remaining trees (Conversions, Simulation Signals,
Alarm Definitions and OPC Crosslinks) are optional features used by some systems.

This section describes the editor features that you will use to configure Math & Logic. If
you are a new user and want a procedure to guide you through a typical configuration
session, refer to the Quick Start Guide.

Caution!
After you edit the configuration, you must open the File menu and select Save &
Update Server, or click the Save & Update Server toolbar button, for the changes
you have made to take effect. Otherwise, the server will still be running with the old
configuration.

To launch the editor from the Windows Start menu, go to Cyberlogic Suites, then
open the Configuration sub-menu, and then select OPC Server.

The left pane of the main workspace window includes the six main configuration trees.
The first part of this reference explains how to create and configure Math & Logic in the
Address Space tree. This includes three sections:

 Math & Logic Devices

 Math & Logic Data Items

 Math & Logic Editor

Following that is a very brief description of the Conversions, Simulation Signals, Alarm
Definitions, Network Connections and OPC Crosslinks trees. For a full discussion of these

Math & Logic Help

Cyberlogic Technologies Inc. - 48 -

trees and other important topics including configuration import/export, editor options and
connecting to OPC client software, please refer to the Cyberlogic OPC Server Help.

The last sections in this configuration editor reference cover important tips and
techniques for Saving and Undoing Configuration Changes, Configuration Import/Export
and Editor Options

Address Space

The Address Space Tree describes the hierarchical address structure of the Cyberlogic
OPC Server. The branches of the tree that relate to Math & Logic are Device Folders,
Math & Logic Devices, and Folders. Its ―leaves‖ are Math & Logic Data Items. The intent
of this structure is to permit the user to organize the data items into logical groups.

Device Folders

A device folder groups devices and other device folders. You can place a device folder
directly under the Address Space root folder or under another device folder, up to four
levels deep.

Caution!
After you edit the configuration, you must open the File menu and select Save &
Update Server, or click the Save & Update Server toolbar button, for the changes
you have made to take effect. Otherwise, the server will still be running with the old
configuration.

Creating a New Device Folder

Cyberlogic_OPC_Server_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 49 -

Right-click on the Address Space root folder or an existing device folder. Select New and
then Device Folder from the context menu.

Duplicating a Device Folder

You can create multiple device folders in a single operation by duplicating an existing
one. This can help you to quickly create similarly-configured device folders. To duplicate
a device folder, right-click on it and select Duplicate… from the context menu.

The above dialog box opens. You must specify how the duplicates are to be named by
entering values for the Base Text, First Number, Numeric Places and Number
Increment fields. To name the duplicated device folders, the editor begins with the
base text and appends a number to it. The first duplicate uses the First Number value
with the specified number of digits. The editor then adds Number Increment to that
value for each of the remaining duplicates.

As an example, if Numeric Places is 3 and First Number is 2, the number 002 will be
appended to the base text.

Use the Number Of Duplicates field to specify the number of device folders you wish
to create. If you want to duplicate all branches within the original device folder, check
the Including Subtree checkbox.

Deleting a Device Folder

To delete an existing device folder, select it and press the Delete key, or right-click on
the device folder and select Delete from the context menu.

Math & Logic Help

Cyberlogic Technologies Inc. - 50 -

General Tab

Name

The Name identifies this device folder. It can be up to 50 characters long, may contain
spaces, but must not begin with a space. It also may not contain any periods.

Description

This optional field further describes the device folder. It can be up to 255 characters
long.

Simulate

Check this box to enable data simulation for all data items at this level or below. This
provides a quick way to switch between real and simulated data for a large number of
data items. Refer to the Cyberlogic OPC Server Help for a full discussion about simulating
data.

Note
If the Simulate checkbox is grayed-out, it indicates that simulation has already been
selected at a higher level.

Cyberlogic_OPC_Server_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 51 -

Disable Writes

Check this box to disable write requests for all data items at this level or below. By
default, this box is not checked and writes are enabled.

Note
If the Disable Writes checkbox is grayed-out, it indicates that writes have already been
disabled a higher level.

Math & Logic Devices

A Math & Logic device contains Math & Logic data items. The program enable and
execution criteria are configured in the device, so users typically group data items that
have the same criteria within the same device. You can place Math & Logic devices
directly in the Address Space root folder or in a device folder. A Math & Logic device also
functions as a folder; it can contain folders and Math & Logic data items.

Note
All programs under a Math & Logic device execute in the context of a single thread.
That means that if multiple programs are ready for execution, they will execute
sequentially in the order in which they became ready for execution.

If your application requires concurrency, or if you want to better utilize a multi-core
CPU, you should create multiple Math & Logic devices, and group the data items
(programs) appropriately.

Caution!
After you edit the configuration, you must open the File menu and select Save &
Update Server, or click the Save & Update Server toolbar button, for the changes
you have made to take effect. Otherwise, the server will still be running with the old
configuration.

Math & Logic Help

Cyberlogic Technologies Inc. - 52 -

Creating a New Math & Logic Device

Right-click on the Address Space root folder or a device folder. Select New and then
Device and then Math & Logic from the context menu.

Duplicating a Math & Logic Device

You can create multiple Math & Logic Devices in a single operation by duplicating an
existing one. This can help you to quickly create similarly-configured devices. To
duplicate a Math & Logic Device, right-click on it and select Duplicate… from the
context menu.

Math & Logic Help

Cyberlogic Technologies Inc. - 53 -

The above dialog box opens. You must specify how the duplicates are to be named by
entering values for the Base Text, First Number, Numeric Places and Number
Increment fields. To name the duplicates, the editor begins with the base text and
appends a number to it. The first duplicate uses the selected First Number value with the
specified number of digits. The editor then adds Number Increment to that value for
each of the remaining duplicates.

Use the Number Of Duplicates field to specify the number of Math & Logic Devices
you wish to create. If you want to duplicate all branches within the original device, check
the Including Subtree checkbox.

In the example, a single digit will be appended to the base text Monitoring – Line (there
is a space at the end). The numbering begins with 2, and three duplicates will be
created. They will be called Monitoring – Line 2, Monitoring – Line 3 and Monitoring –
Line 4.

Deleting a Math & Logic Device

To delete an existing Math & Logic device, select it and press the Delete key, or right-
click on the device and select Delete from the context menu.

General Tab

Name

The name identifies the Math & Logic device. It can be up to 50 characters long, may
contain spaces, but must not begin with a space. It also may not contain any periods.

Math & Logic Help

Cyberlogic Technologies Inc. - 54 -

Description

This optional field further describes the Math & Logic device. It can be up to 255
characters long.

Simulate

Check this box to enable data simulation for all Math & Logic data items on this device.
This provides a quick way to switch between real and simulated data for a large number
of data items. Refer to the Cyberlogic OPC Server Help for a full discussion about
simulating data.

Note
If the Simulate checkbox is grayed-out, it indicates that simulation has already been
selected at a higher level.

Disable Writes

Check this box to disable write requests for all data items at this level and below. By
default, this box is not checked and writes are enabled.

Note
If the Disable Writes checkbox is grayed-out, it indicates that writes have already been
disabled a higher level.

Device Logic Enable

This radio selection allows you to enable or disable the Math & Logic programs for the
data items in the device. When device logic is enabled, the Run Logic criteria will cause
the programs to execute. When device logic is disabled, the programs will not run,
regardless of the Run Logic criteria. You will configure the default settings for the Run
Logic criteria on the Settings tab, but each data item can override the default.

If you select Enable, device logic will be enabled.

If you select Use Data Item To Enable, you must specify a data item that will control
the device logic. You must also enter a value for Interval to indicate how often the
value of the data item will be checked. If the value of the specified data item is true,
device logic will be enabled, otherwise it will be disabled. You can click the Browse...
button to open a window that will allow you to browse for the desired data item.

Note
If the item you choose contains numeric data, a value of zero is taken as false and a
nonzero value is true.

If you select Disable, device logic will be disabled.

Cyberlogic_OPC_Server_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 55 -

Settings Tab

This tab is used to specify the default settings used by all data items under this device.
Each data item can either use these settings, or define its own.

Data Sampling

Math & Logic programs use OPC data items as inputs. This section allows you to specify
how often to check these data items for a change in their value. You do this by entering
a sampling interval and a deadband. These are default values. Each data item declaration
in a program can override these defaults, if desired. Refer to the Data Item Declarations
section for information on how to do this.

Interval

You may specify the default interval, in milliseconds, at which you want the input data to
be sampled. The ITEM variable declaration in your program can override this value.

Deadband

Here you may specify the default deadband in percent of full scale. This is the minimum
amount that will be considered a change in the value. The deadband helps to eliminate
problems caused by values that jitter. The ITEM variable declaration in your program can
override this value, if desired. Refer to the Data Item Declarations section for information
on how to do this.

Math & Logic Help

Cyberlogic Technologies Inc. - 56 -

Caution!
In keeping with the OPC specifications, the deadband functions apply only to data
items that have a dwEUType of Analog. No data items have this type by default. To
convert a data item to Analog, you must apply a conversion to it. This allows you to
associate engineering units with the data item, and it is the engineering units range
that is used for the deadband calculation.

Run Logic

This section allows you to specify when to run the programs in the Math & Logic data
items. There are three methods available, and you can choose any combination. If you
choose more than one, the programs will run when any one of the conditions are met.
This is a default setting. Each data item can override this default, if desired. Refer to the
discussion of the Advanced... button on the Data Item Program tab for information on
how to do this.

On Data Change

Check this box to run the programs whenever their input data values change.

If a program has more than one input, it will run when any input changes.

Note:
Programs can exclude some inputs from triggering On Data Change execution. Refer to
the Data Item Declarations section for information on how to do this.

Use Fixed Interval

Check this box to run the programs at the interval you specify.

Note
If multiple Run Logic conditions are used, the Fixed Interval is restarted each time any
of the Run Logic conditions triggers the program execution.

Triggered

Check this box to run the programs when the specified data item changes state.

If you choose this option, you must specify an Item ID, Mode and Interval. You may also
specify a Trigger Deadband.

Item ID

Specify a data item to use as the trigger. When the value of the trigger data item
changes state as specified in the Mode selection, the programs run. Click the Browse...
button to open a window that will allow you to browse for the desired data item.

Math & Logic Help

Cyberlogic Technologies Inc. - 57 -

Interval

You must specify an interval when using triggered execution. This value specifies how
often the trigger data item will be read to see if it has changed state.

Deadband

Here you may specify the deadband in percent of full scale. This is the minimum amount
that will be considered a change in the value. The deadband helps to eliminate problems
caused by values that jitter.

Caution!
In keeping with the OPC specifications, the deadband functions apply only to data
items that have a dwEUType of Analog. No data items have this type by default. To
convert a data item to Analog, you must apply a conversion to it. This allows you to
associate engineering units with the data item, and it is the engineering units range
that is used for the deadband calculation.

Mode

You must choose the type of change in the trigger item that will cause the logic to run.

 Choose False to True to trigger when the value changes from false to true.

 Choose True to False to trigger when the value changes from true to false.

 Choose Any Change to trigger when any change in the value occurs.

Note
In False to True or True to False mode:

If the item you choose contains numeric data, a value of zero is taken as false and a
nonzero value is true.

In Any Change mode:

If the item you choose contains numeric or string data, any change in the value
triggers the write.

Folders

A folder logically groups data items and other folders. You can place folders directly
under devices or under other folders, up to four levels deep.

Caution!
After you edit the configuration, you must open the File menu and select Save &
Update Server, or click the Save & Update Server toolbar button, for the changes
you have made to take effect. Otherwise, the server will still be running with the old
configuration.

Math & Logic Help

Cyberlogic Technologies Inc. - 58 -

Creating a New Folder

Right-click on an existing device or folder, and select New and then Folder from the
context menu.

Duplicating a Folder

You can create multiple folders in a single operation by duplicating an existing one. This
can help you to quickly create similarly-configured folders. To duplicate a folder, right-
click on it and select Duplicate… from the context menu.

The above dialog box opens. You must specify how the duplicates are to be named by
entering values for the Base Text, First Number, Numeric Places and Number
Increment fields. To name the duplicated folders, the editor begins with the base text
and appends a number to it. The first duplicate uses the selected First Number value
with the specified number of digits. The editor then adds Number Increment to that
value for each of the remaining duplicates.

As an example, if Numeric Places is 3 and First Number is 2, the number 002 will be
appended to the base text.

Use the Number Of Duplicates field to specify the number of folders you wish to
create. If you want to duplicate all branches within the original folder, check the
Including Subtree checkbox.

Deleting a Folder

To delete an existing folder, select it and press the Delete key, or right-click on the
folder and select Delete from the context menu.

Math & Logic Help

Cyberlogic Technologies Inc. - 59 -

General Tab

Name

The Name identifies this folder. It can be up to 50 characters long, may contain spaces,
but must not begin with a space. It also may not contain any periods.

Description

This optional field further describes the folder. It can be up to 255 characters long.

Simulate

Check this box to enable data simulation for all data items at this level or below. This
provides a quick way to switch between real and simulated data for a large number of
data items. Refer to the Cyberlogic OPC Server Help for a full discussion about simulating
data.

Note
If the Simulate checkbox is grayed-out, it indicates that simulation has already been
selected at a higher level.

Cyberlogic_OPC_Server_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 60 -

Disable Writes

Check this box to disable write requests for all data items at this level or below. By
default, this box is not checked and writes are enabled.

Note
If the Disable Writes checkbox is grayed-out, it indicates that writes have already been
disabled a higher level.

Math & Logic Data Items

Math & Logic data items contain the Math & Logic programs. They take the value that
the program returns when it executes. You can place Math & Logic data items directly in
a Math & Logic device, or in a folder within a Math & Logic device. Normally, the
programs are enabled and run according to criteria you configure in the parent device.
However, an advanced configuration feature allows you to modify the enable criteria and
override the Run Logic criteria.

Caution!
After you edit the configuration, you must open the File menu and select Save &
Update Server, or click the Save & Update Server toolbar button, for the changes
you have made to take effect. Otherwise, the server will still be running with the old
configuration.

Creating a New Math & Logic Data Item

Math & Logic Help

Cyberlogic Technologies Inc. - 61 -

Right-click on a Math & Logic device or a folder within a Math & Logic device. Select
New and then Data Item from the context menu.

Deleting Math & Logic Data Items

To delete an existing Math & Logic data item, select it and press the Delete key, or
right-click on the data item and select Delete from the context menu.

General Tab

Name

The Name identifies the data item. It can be up to 50 characters long, may contain
spaces, but must not begin with a space. It also may not contain any periods.

Description

This optional field further describes the data item. It can be up to 255 characters long.

Simulate

Check this box to enable data simulation for this data item. Refer to the Cyberlogic OPC
Server Help for a full discussion about how to simulate data.

Cyberlogic_OPC_Server_Help.pdf
Cyberlogic_OPC_Server_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 62 -

Note
If the Simulate checkbox is grayed-out, it indicates that simulation has already been
selected at a higher level.

Disable Writes

Check this box to disable all write requests for this data item. By default, this box is not
checked and writes are enabled.

Note
If the Disable Writes checkbox is grayed-out, it indicates that writes have already been
disabled a higher level.

Program Type

Here you may select the type of program you want to use for the data item. The default
is Custom. For detailed information on this field and the available program types, refer to
the Math & Logic Program Types section.

Program Tab

Math & Logic Help

Cyberlogic Technologies Inc. - 63 -

Logic

This section is where you view and edit the data item's Math & Logic program. The large
field provides a display-only view of the program.

Note
If the background color for the Logic window is red, it indicates that the program has
not yet been compiled, and therefore no executable code exists.

Edit...

Click this button to open the Math & Logic Editor. This is where you edit, compile and
debug the program.

Note
You can also start the Math & Logic Editor by double-clicking on the selected data item
in the address space tree.

Copy Code

Click this button to copy the program code. You can then paste the code into another
Math & Logic data item and then modify it in the new data item.

Advanced...

Click this button to open the Advanced editing window. Normally, the criteria that enable
and run the program are configured in the Math & Logic device. This window allows
advanced users to modify these criteria. You can modify the conditions that enable the
logic, and override the criteria that cause it to run.

Math & Logic Help

Cyberlogic Technologies Inc. - 64 -

By default, the program runs only when at least one client subscribes to the data item.
This reduces the load on the processor. However, the Item Logic Enable selection lets
you request that the logic run continuously, even without any subscriptions.

The Run Logic Override section lets you declare that the run criteria in the Math & Logic
device should be ignored, and the criteria you specify here should be used instead. For
details on editing these criteria, refer to the Math & Logic device Settings Tab discussion.

OPC Client

This section allows you to configure how the program's result will be presented to the
OPC client software.

Canonical Data Type

Select the data type you want to use to present the results to the client. The default is
VT_R8 (floating-point double).

Array

Check this box to specify that the returned data will be in the form of an array.

Elements

Enter the number of elements in the array.

Math & Logic Help

Cyberlogic Technologies Inc. - 65 -

Lower Bound

Enter the lowest element number for the array.

Use Conversion

Check this box to apply a conversion to the data before it is presented to the client. You
must then select the conversion you want to use from the list of defined Conversions.

Simulation Tab

Signal

If you enabled simulation on the General tab or at a higher level, you must select how to
simulate the data item's value. Your choices are: a fixed value, an echo of the last value
written to the item, or one of the previously-defined Simulation Signals.

Value

When simulation is enabled and the Signal field is set to Fixed Value, the data item will
be set to this value.

Math & Logic Help

Cyberlogic Technologies Inc. - 66 -

Alarms Tab

Generate Alarms

If this box is checked, the server will test the alarm conditions for this data item. It will
then generate alarms as appropriate.

Note
Only OPC clients that support the OPC Alarms & Events specification can receive
alarms.

Refer to the Cyberlogic OPC Server Help for a full discussion about how to create and use
alarms.

Message Prefix

Enter the text for the first part of the alarm message. The second part will be the body
text of the specific alarm that is generated.

Alarm

Select one of the previously-defined Alarm Definitions to serve as the alarm template for
this data item.

Cyberlogic_OPC_Server_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 67 -

Properties Tab

In addition to the main data item properties—value, quality and timestamp—the OPC
specification includes several optional properties that your client application may use.
This tab allows you to set these data item properties. These properties are static and do
not change while the server is running.

Engineering Units

This is OPC property ID 100. It specifies the engineering units text, such as DEGC or
GALLONS. It can be up to 50 characters long.

Open Label

This is OPC property ID 107, and is presented only for discrete data. This text describes
the contact when it is in the open (zero) state, such as STOP, OPEN, DISABLE or
UNSAFE. It can be up to 50 characters long.

Close Label

This is OPC property ID 106, and is presented only for discrete data. This text describes
the contact when it is in the closed (non-zero) state, such as RUN, CLOSE, ENABLE or
SAFE. It can be up to 50 characters long.

Math & Logic Help

Cyberlogic Technologies Inc. - 68 -

Default Display

This is OPC property ID 200. It is the name of an operator display associated with this
data item. It can be up to 255 characters long.

BMP File

This is OPC property ID 204. It is the name of a bitmap file associated with this data
item, for example C:\MEDIA\FIC101.BMP. It can be up to 255 characters long.

HTML File

This is OPC property ID 206. It is the name of the HTML file associated with this data
item, for example http://mypage.com/FIC101.HTML. It can be up to 255 characters long.

Sound File

This is OPC property ID 205. It is the name of the sound file associated with this data
item, for example C:\MEDIA\FIC101.WAV. It can be up to 255 characters long.

AVI File

This is OPC property ID 207. It is the name of the AVI file associated with this data item,
for example C:\MEDIA\FIC101.AVI. It can be up to 255 characters long.

Foreground Color

This is OPC property ID 201. Click on the box and select the foreground color used to
display the item.

Background Color

This is OPC property ID 202. Click on the box and select the background color used to
display the item.

Blink

This is OPC property ID 203. Check this box to indicate that displays of the item should
blink.

Math & Logic Program Types

When you create a Math & Logic data item, you must select a program type on its
General Tab.

Math & Logic Help

Cyberlogic Technologies Inc. - 69 -

There are three groups of choices:

 Custom program type lets you write your own programs. This type is fully
functional only in Premier Suite and Enterprise Suite products. In other
Cyberlogic OPC products, you can create and edit custom data items, but
they run in demo mode only. For details, refer to Pre-Programmed and Demo
Math & Logic Items in the Introduction section.

 Switches include pre-programmed applets that return true or false according
to a specific condition. These types are fully functional in all Cyberlogic OPC
products.

 Triggers include pre-programmed applets that increment each time the
specified time events occur. Some triggers respond to time intervals, while
others use the system time and date. These types are fully functional in all
Cyberlogic OPC products.

Note
You can copy a pre-programmed applet’s generated program by pressing the Copy
Code button on the Program tab. You can then paste it into your own Custom program
and modify it as needed.

Custom Programs

Math & Logic programs of type Custom are fully functional only in Cyberlogic’s Premier
Suite and Enterprise Suite products. In other Cyberlogic OPC products, you can create
and edit custom data items, but they run in demo mode only. For details, refer to Pre-
Programmed and Demo Math & Logic Items in the Introduction section.

When you select a custom type, the program is initially empty, and you use the Math &
Logic Editor to create the desired program.

Switches

Math & Logic applets located in the Switches group are fully functional in all Cyberlogic
OPC products. You may choose one of several pre-programmed applets, each of which
evaluates a specific condition and then returns a true or false value. Each switch also has
a public variable named "Not" whose value is the opposite of the switch's value. You
cannot modify the switch's program, but you can specify certain parameters that it uses.

The pre-programmed choices are:

Math & Logic Help

Cyberlogic Technologies Inc. - 70 -

Comparison Switch

This applet compares the value of a data item to a constant or another data item. It
returns a value of true if the comparison condition is met and false if it is not.

The parameters are:

Data Item: ItemID of the data item you want to compare

Update Rate: The interval at which you want to update the value of
the data item, in milliseconds

Deadband: The deadband in percent of full scale

Comparison: The type of comparison: is greater than (>), is greater
than or equal to (>=), is equals (==), is not equal to
(!=), is less than or equal to (<=), is less than (<),
logical AND, logical OR

Constant Value: Select this to compare the data item to a constant value,
which you must then specify using the Value and Data
Type fields

Data Item: Select this to compare the data item to another data
item, which you must then specify using the Data Item
ID, Update Rate and Deadband fields

Note
The Comparison type includes the logical AND and logical OR. When the public variable
"Not" is used, that also provides the NAND and NOR functionality. By chaining multiple
AND/OR/NAND/NOR type data items, any boolean expression can be created.
However, the same boolean expression, when implemented by a single custom
program, will run much faster.

Math & Logic Help

Cyberlogic Technologies Inc. - 71 -

Duration Switch

This applet returns true for the given duration following any change to the Trigger item.

The parameters are:

Data Item: ItemID of the trigger data item

Update Rate: The interval at which you want to update the value of
the trigger data item, in milliseconds

Deadband: The deadband in percent of full scale

Ignore Bad Quality: Ignore trigger values with BAD quality if checked

Ignore Uncertain Quality: Ignore trigger values with UNCERTAIN quality if checked

Duration: Duration of the true output following any change to the
trigger item

Initial State: Initial state for the output (true or false)

Quality Switch

This applet returns a value of true or false to indicate whether or not a specified data
item has the selected quality.

Math & Logic Help

Cyberlogic Technologies Inc. - 72 -

The parameters are:

Data Item: ItemID of the data item you want to test

Update Rate: The interval at which you want to check the quality of
the data item. The value is in milliseconds.

Deadband: The deadband in percent of full scale

Quality: Selects what quality of the data item should return a
value of true. The valid choices are: Bad Quality, Not
Bad Quality, Good Quality, Not Good Quality, Uncertain
Quality, Not Uncertain Quality

Shift Switch

This applet returns a value of true on selected days during a specified time range, and
returns a value of false otherwise.

Math & Logic Help

Cyberlogic Technologies Inc. - 73 -

The parameters are:

Start time: The time of day that is the beginning of the period
during which the value will be true

End time: The time of day that is the end of the period during
which the value will be true

On: The days of the week on which the value will be true
during the specified time period

Triggers

Math & Logic applets located in the Triggers group are fully functional in all Cyberlogic
OPC products. Their value increments each time the specified time events occur. Some
triggers respond to time intervals, while others use the system time and date. You
cannot modify the trigger's program, but you can specify certain parameters that it uses.

The pre-programmed choices are:

Daily Trigger

This applet increments a counter once a day on selected days.

Math & Logic Help

Cyberlogic Technologies Inc. - 74 -

The parameters are:

Trigger time: The time of day at which the counter will increment

Selected Days: Select this to indicate the days of the week on which the
counter will increment. You must then select one or
more days of the week.

Every: Select this to specify an interval of days at which the
counter will increment. You must then specify a number
of days.

Starting: The first date on which the counter will increment

Ending: If checked, the last date on which the counter will
increment

Interval Trigger

This applet increments a counter at specified interval during the specified window on
chosen days of the week. The maximum interval is 24 hours.

Math & Logic Help

Cyberlogic Technologies Inc. - 75 -

The parameters are:

Every: The interval of time at which the counter will increment

All Day: Select this if the counter should increment for the entire
day

From: Select this to specify a window of time during the day
when the counter should increment

On: The days of the week on which the counter will
increment

Math & Logic Help

Cyberlogic Technologies Inc. - 76 -

Immediately: Select this to begin incrementing the counter at the
specified interval from now

At: Select this to begin incrementing the counter at the
specified interval from the selected time

Ending: If checked, the last time the counter will increment

Examples:

The interval is 15 minutes and the current time is 9:03:16. If you choose Immediately,
the increments will occur at 9:18:16, then at 9:33:16, then at 9:48:16, and so on. If you
choose At 9:00:00, the increments will occur at 9:15:00, then at 9:30:00, then at
9:45:00, and so on.

The interval is 10 seconds and the current time is 9:03:16. If you choose Immediately,
the increments will occur at 9:03:26, then at 9:03:36, then at 9:03:46, and so on. If you
choose At 9:00:00, the increments will occur at 9:03:20, then at 9:03:30, then at
9:03:40, and so on.

Monthly Trigger

This applet increments a counter once a day on the selected day of selected months.

Math & Logic Help

Cyberlogic Technologies Inc. - 77 -

The parameters are:

Trigger time: The time of day at which the counter will increment

Day of the month: Select this to indicate the numeric day of the month on
which the counter will increment

The: Select this to indicate the instance of a weekday on
which the counter will increment

These Months: Select one or more months in which the counter will
increment

Starting: The first date on which the counter will increment

Ending: If checked, the last date on which the counter will
increment

Math & Logic Help

Cyberlogic Technologies Inc. - 78 -

Weekly Trigger

This applet increments a counter once a day on selected days of the week every so many
weeks.

The parameters are:

Trigger time: The time of day at which the counter will increment

Every: The interval of weeks at which the counter will
increment

On: The day(s) on which the counter will increment

Starting: The first date on which the counter will increment

Ending: If checked, the last date on which the counter will
increment

Math & Logic Editor

The Math & Logic Editor allows you to create, edit and compile your programs using
Cyberlogic's C-logic programming language. (Refer to Appendix A: C-logic Language

Math & Logic Help

Cyberlogic Technologies Inc. - 79 -

Reference for detailed information on programming in C-logic.) To launch the editor,
select a Math & Logic data item and go to its Program tab, and then click the Edit...
button. You can also launch the editor by double-clicking on the data item in the address
space tree.

Note
To get help with any function keyword or symbol in the C-logic editor, just put the
cursor on the function name or keyword, or select the symbol, and press <F1>.

The editor has three panes for viewing and editing:

 Code View Pane

 Add Items Pane

 Status Pane

In addition, it has three ribbons containing the editing tools:

 Home Ribbon

 Functions Ribbon

 Expressions Ribbon

Code View Pane

The Code View pane is the main working area of the editor. This is where you edit your
program, either by adding items from the ribbon, or by direct text editing.

Math & Logic Help

Cyberlogic Technologies Inc. - 80 -

Add Items Pane

The Add Items pane will assist you in adding data items as inputs or outputs for your
program. To open it, click on the Add Items button at the right edge of the editor.

In this pane, you can browse through all of the configured data items, status items and
DirectAccess tags that are available to the OPC server. Select the item you want to use,
and then enter a name for it in the Item Name field. This is the local variable name you
will use for the data item in your program.

If you wish, you can override the default deadband and sampling rate for the data item.
You can also exclude the item from triggering On Data Change execution. Refer to the
Data Item Declarations section for information on how to do this.

Once you have edited the OPC Properties fields as desired, click Add Item to create a
variable declaration in the Code View pane.

Math & Logic Help

Cyberlogic Technologies Inc. - 81 -

The example above shows an ITEM declaration created by the Add Items pane. It
includes the Item Name that the user entered, followed by the full ItemID. In this case,
the user elected to override the default deadband and sampling rate, so the declaration
shows the user-specified values.

Note
The ITEM statement is always inserted at the top of the program, regardless of the
current cursor position.

Status Pane

The Status pane provides error messages that the compiler generates to help in
debugging your program.

Math & Logic Help

Cyberlogic Technologies Inc. - 82 -

In this example, line 4 has two operators in a row. The Status pane shows that the error
occurred in line 4 and gives a description of the problem. The red icon at the left side of
the Code View pane visually flags the error location.

Note
The compiler stops after the first error is found. Therefore, if multiple errors are
present, only the first one found will be shown.

Home Ribbon

Math & Logic Help

Cyberlogic Technologies Inc. - 83 -

Logic Group

From the Logic group, you can:

 Compile your program. If the compiler detects errors in the code, they will
be displayed in the Status pane.

 Save the configuration and update the server. This allows you to run the
program without leaving the editor.

 Launch Cyberlogic's OPC client. With it, you can view the input and output
data for your program.

Clipboard Group

This group contains the standard clipboard functions, and the editor also supports their
standard keyboard shortcuts:

 Cut (Ctrl-X)

 Copy (Ctrl-C)

 Paste (Ctrl-V)

 Select All (Ctrl-A)

Editing Group

These editing functions, and their keyboard shortcuts, work just as they do in standard
text editors:

 Undo (Ctrl-Z)

 Redo (Ctrl-Y)

 Find (Ctrl-F) Click the arrow beside the Find button to access Goto, which
allows you to jump directly to any line in the program.

 Replace (Ctrl-H)

To convert one or more lines of code into comments, select them and click the Comment
button. It will insert a double-slash at the beginning of each of the selected lines.

Math & Logic Help

Cyberlogic Technologies Inc. - 84 -

To remove the double-slash from these commented lines, select them and click
Uncomment.

Options Group

This group lets you adjust the view according to your preferences.

The Preferences button opens an editor that provides an extensive selection of choices
that you can use to customize the appearance of the editor. These include font style, size
and color, along with indentation options.

Show Windows lets you choose how to display or hide the Code View, Status and Add
Items panes.

Functions Ribbon

Each group on the Functions ribbon contains a gallery of functions and help screens.
Click a group's down arrow to expand its gallery of functions.

Here is the gallery for the Date and Time group.

Math & Logic Help

Cyberlogic Technologies Inc. - 85 -

Click the dialog box launcher to open a help screen for the group. This screen
contains a list of the functions with a description and example for each. The function
names are hyperlinks. Click them to open the help file to the section for that function.

Note
On the help screen for the Operators group, the function names are not underlined.
This makes it easier to read the individual symbols. However, the names are still
hyperlinked to the help file.

Note
Another way you can get help with any function, keyword or symbol in the C-logic
editor is to place the cursor on the function name or keyword, or select the symbol,
and then press <F1>.

Math Group

This group includes the common trigonometric functions, powers, logarithms,
exponentials, and several rounding and conversion functions.

Refer to the Math Functions section for a detailed description of each of these functions.

String Group

The String group includes string manipulation, conversion, search, replace and property
functions.

Refer to the String Functions section for a detailed description of each of these functions.

Math & Logic Help

Cyberlogic Technologies Inc. - 86 -

Bitwise Group

The Bitwise functions allow you to extract ranges of bits within a value, and to shift bits
left and right.

Refer to the Bitwise Functions section for a detailed description of each of these
functions.

Date and Time Group

The Date and Time Group includes functions to retrieve, format and modify date and
time values.

Refer to the Date & Time Functions section for a detailed description of each of these
functions.

Variable Properties Group

All C-logic variables include Error and Quality properties. This group contains the Error
and OPC Quality functions, which simplify the interpretation of these properties.

Refer to the Variable Properties Functions section for a detailed description of each of
these functions.

Refer to Appendix B: OPC Quality Flags for information about OPC data quality.

Other Group

These functions help you to debug the program and control its execution.

Refer to the Other Functions section for a detailed description of each of these functions.

Math & Logic Help

Cyberlogic Technologies Inc. - 87 -

Expressions Ribbon

Each group on the Expressions ribbon contains a gallery of elements you can use to
create expressions, and corresponding help screens. They are accessed in the same way
as the galleries and help screens on the Functions ribbon.

Constants Group

This group contains several pre-defined constant values, including the OPC quality codes,

and the mathematical constants π and e.

Refer to the Predefined Constants section for a table of available constants.

Variables Group

The Variables group allows you to create custom constants, typed and untyped local
variables, OPC data item variables, and date and time variables in your program.

Refer to the Local Declarations section for detailed information on the types of constants
and variables you can create.

Operators Group

Math & Logic Help

Cyberlogic Technologies Inc. - 88 -

This group provides the operators for mathematical and logical operations.

The Expressions section includes a full list of the available operators.

Statements Group

In this group are the if/else and return statements.

Refer to the Statements section for details of how to construct these types of statements.

Conversions

The results of your Math & Logic programs may be process values that are not expressed
in engineering units. To simplify operations on the data, the Cyberlogic OPC Server
allows you to associate a conversion with each data item.

A user can define many different conversions. A number of data items can then use each
conversion. As a result, the user need not define the same conversion many times over.

Refer to the Cyberlogic OPC Server Help for a full discussion.

Simulation Signals

The server can simulate the data for each of the data items, including Math & Logic data
items, according to a predefined formula. This makes it easy to perform client-side
testing without the need for a working Math & Logic program.

A user can define many different types of simulation signals. A number of data items can
then use each such signal. As a result, the user need not define the same simulation
signal many times over.

The server can generate the following types of simulation signals:

 Read count

 Write count

 Random

 Ramp

 Sine

 Square

 Triangle

 Step

Cyberlogic_OPC_Server_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 89 -

Each signal has parameters that define properties such as amplitude, phase and number
of steps.

Refer to the Cyberlogic OPC Server Help for a full discussion.

Alarm Definitions

The Cyberlogic OPC Server supports the OPC Alarms and Events specification, permitting
it to generate alarms based on the value of data items.

The user may define many different alarm conditions. A number of data items can then
use each such condition. As a result, the user need not define the same alarm condition
many times over.

There are two categories of alarms: digital and limit. Digital alarms are normally used
with Boolean data items, and limit alarms are normally used with numeric data items.
However, both types of alarms may be used with either data type. Alarms cannot be
used with string or array data items, or with bit fields larger than 64 bits.

Refer to the Cyberlogic OPC Server Help for a full discussion.

Note
Configuring alarms is meaningful only if your client software also supports the OPC
Alarms & Events specification. Consult your client software documentation to see what
specifications it supports.

Network Connections

Network connections allow you to configure the networks you will use to communicate to
network nodes. The network nodes may be PLCs, other OPC servers or other devices
that provide data to the OPC server. Typically, the data you receive from these network
nodes will be used as inputs or outputs for the Math & Logic programs.

Refer to the driver agent help files for a full discussion.

Database Operations

In addition to providing data to OPC clients in real time, the Cyberlogic OPC Server can
store it in a database. The feature that does this is called Data Logger. Once the data is
logged, it is available to any application that can access that database. It need not be an
OPC client application.

Refer to the Data Logger Help for a full discussion.

Cyberlogic_OPC_Server_Help.pdf
Cyberlogic_OPC_Server_Help.pdf
Data_Logger_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 90 -

OPC Crosslinks

OPC Crosslinks allow you to transfer data from an OPC server or PLC to other OPC
servers or PLCs. The data item you read from is called the crosslink input. You may write
its value to any number of data items, and these are called crosslink outputs. You can
use Math & Logic data items to enable or disable these transfers, and to control when
the transfers occur.

Refer to the OPC Crosslink Help for a full discussion.

Saving and Undoing Configuration Changes

The Cyberlogic OPC Server Configuration Editor keeps track of recent configuration
changes. Until you save these changes, you can revert to the previously-saved
configuration. The editor supports two types of save operations. The standard Save
operation saves the changes without updating the server or the connected clients. The
Save & Update Server operation saves the changes and also updates the server and all
connected clients.

Caution!
After you edit the configuration, you must open the File menu and select Save &
Update Server, or click the Save & Update Server toolbar button, for the changes
you have made to take effect. Otherwise, the server will still be running with the old
configuration.

Saving Configuration Changes Without Updating the Server

To save the configuration without updating the server, open the File menu and select
Save, or click the Save button on the toolbar. The changes will be saved but the server
will still be running with the old configuration.

Saving Configuration Changes and Updating Server

To save the configuration and update the server, open the File menu and select Save &
Update Server, or click the Save & Update Server button on the toolbar.

Undoing Configuration Changes

To undo configuration changes and revert to the previously saved configuration, open
the File menu and select Undo Changes, or click the Undo Changes button on the
toolbar.

Configuration Import/Export

The Import/Export feature allows you to export the configuration data to text file format
and import configuration data from these exported files. It also allows you to import

OPC_Crosslink_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 91 -

comma separated values (csv) files from other vendors’ OPC servers and programming
software.

For details on this important feature and instructions in its operation, refer to the
Cyberlogic OPC Server Help.

Editor Options

The Cyberlogic OPC Server Configuration editor has several options that may be set to
adjust the operation of the editor to suit your preferences and to set security levels as
needed for communication with client software. For a full discussion, refer to the
Cyberlogic OPC Server Help.

Cyberlogic_OPC_Server_Help.pdf
Cyberlogic_OPC_Server_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 92 -

VALIDATION AND TROUBLESHOOTING

The following sections describe features that will help you to verify and troubleshoot your
server’s operation. The Data Monitor and Cyberlogic OPC Client allow you to view the
data as it is received by the server. Each of those tools allows you to view the Status
Items

Data Monitor

The Data Monitor lets you monitor the values and status of the data items. Its use is
described in detail in the Cyberlogic OPC Server Help.

Cyberlogic OPC Client

The Cyberlogic OPC Client is a simple OPC Data Access client that lets you see how the
server interacts with a client and lets you test its response to various loads. Its use is
described in detail in the Cyberlogic OPC Server Help.

Status Items

The Cyberlogic OPC Server provides status items that are accessible to any connected
OPC client application. These items provide health and performance information about
the server itself, as well as the network connections, network nodes, devices and
crosslinks. For complete information on the standard status items and how to access
them, refer to the Cyberlogic OPC Server Help. This section describes status items that
are specific to Math & Logic.

Cyberlogic_OPC_Server_Help.pdf
Cyberlogic_OPC_Server_Help.pdf
Cyberlogic_OPC_Server_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 93 -

Math & Logic Status Item Definitions

When you connect to the Cyberlogic OPC Server with a client application and browse for
items to display, the status items are shown in folders called _Status. The contents of
each folder depend on the type of item that it provides status for.

 Device Status

 Data Item Status

Math & Logic Help

Cyberlogic Technologies Inc. - 94 -

Device Status

The device status items are in folders called _Status located directly under the Math &
Logic device branches in the address space. Some device status items are common to all
device types, and these are documented in the Cyberlogic OPC Server Help. The status
items specific to Math & Logic devices are listed here.

IsEnabled

Indicates whether or not the Math & Logic device is enabled.

The valid values are:

 0 = Disabled

 1 = Enabled

Programs_ExeCount

This is the total execution count for all programs associated with this Math & Logic
device.

The counter is incremented each time any program associated with this device executes.
This counter cannot be reset.

Programs_ErrorCount

This is the total error count for all programs associated with this Math & Logic device.

Cyberlogic_OPC_Server_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 95 -

The counter is incremented each time any program associated with this device generates
an error. Refer to ResetAllErrorCounts, above, to see how to reset this counter to zero.

ProgramTriggers_ErrorCount

This is the total error count for all program trigger data items associated with this Math &
Logic device. It is incremented each time bad quality data is received for any program
trigger data item. Refer to Appendix B: OPC Quality Flags for information about OPC data
quality.

EnableDevice_ErrorCount

This is the error count associated with the control input used to enable this Math & Logic
device. It is incremented each time bad quality data is received for this data item. (Refer
to Appendix B: OPC Quality Flags for information about OPC data quality.)

This item is present only if Use Data Item To Enable is selected on the General Tab of
the Math & Logic device.

EnableDevice_ItemID

This is the item ID string associated with the device enable control input.

This item is present only if Use Data Item To Enable is selected on the General Tab of
the Math & Logic device.

EnableDevice_UpdateCount

The number of times the device enable control input has changed from enabled to
disabled or disabled to enabled. This count is incremented each time IsEnabled changes
state.

This item is present only if Use Data Item To Enable is selected on the General Tab of
the Math & Logic device.

EnableDevice_LastError

The last error code associated with the device enable control input.

This item is present only if Use Data Item To Enable is selected on the General Tab of
the Math & Logic device.

EnableDevice_LastErrorQuality

The last error quality associated with the device enable control input. (Refer to Appendix
B: OPC Quality Flags for information about OPC data quality.)

This item is present only if Use Data Item To Enable is selected on the General Tab of
the Math & Logic device.

EnableDevice_LastErrorString

The last error code string associated with the device enable control input.

Math & Logic Help

Cyberlogic Technologies Inc. - 96 -

This item is present only if Use Data Item To Enable is selected on the General Tab of
the Math & Logic device.

Data Item Status

The folder that contains each Math & Logic data item also contains a folder called ${Item
Name}, where Item Name is the name of the Math & Logic data item. Within that folder
is a _Status folder that contains the status items. Some status items are common to all
data item types, and these are documented in the Cyberlogic OPC Server Help. The
status items specific to Math & Logic data items are listed here.

Program_ErrorCount

This is the error count associated with the data item's program. It is incremented each
time the program execution encounters a runtime error.

Note When a program generates a runtime error, its current execution is terminated.

Program_LastError

This is the last error code associated with this program.

Program_LastErrorLine

This is the line number in the program's source code at which the last runtime error
occurred.

Cyberlogic_OPC_Server_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 97 -

Program_LastErrorQuality

This is the last error quality associated with this program. Refer to Appendix B: OPC
Quality Flags for information about OPC data quality.

Program_LastErrorString

This is the last error code string associated with this program.

Program_ExeCount

This counter contains the total program execution count. It is incremented each time the
program executes.

Program_ExeTimeLast

This is the duration of the last program execution. The time is expressed in
microseconds.

Note
All programs executing under Windows are subject to interruptions, such as device
driver interrupts and preemptions by higher-priority programs. The value of the
Program_ExeTimeLast includes the time of these interruptions. Therefore, your
program’s last execution time will generally be lower than the value in the
Program_ExeTimeLast.

Program_ExeTimeMin

This is the minimum duration of the program’s execution. The time is expressed in
microseconds.

Note
Each Save & Update Server operation resets the Program_ExeTimeMin value to
zero.

Program_ExeTimeMax

This is the maximum duration of the program’s execution. The time is expressed in
microseconds.

Note
All programs executing under Windows are subject to interruptions, such as device
driver interrupts and preemptions by higher-priority programs. The value of the
Program_ExeTimeMax includes the time of these interruptions. Therefore, your
program's maximum execution time will generally be lower than the value in the
Program_ExeTimeMax.

Note
Each Save & Update Server operation resets the Program_ExeTimeMax value to
zero.

Math & Logic Help

Cyberlogic Technologies Inc. - 98 -

ProgramTrigger_ErrorCount

This counter contains the total error count associated with the trigger program execution
control input. It is incremented each time bad quality data is received for this input.
Refer to Appendix B: OPC Quality Flags for information about OPC data quality.

This item is present only if a data item is configured to trigger the program execution.
This may be done on the Settings Tab of the Math & Logic device or in the Advanced...
settings for the Math & Logic data item.

ProgramTrigger_ItemID

This is the Item ID string associated with the trigger program execution control input.

This item is present only if a data item is configured to trigger the program execution.
This may be done on the Settings Tab of the Math & Logic device or in the Advanced...
settings for the Math & Logic data item.

ProgramTrigger_LastError

This is the last error code associated with the trigger program execution control input.

This item is present only if a data item is configured to trigger the program execution.
This may be done on the Settings Tab of the Math & Logic device or in the Advanced...
settings for the Math & Logic data item.

ProgramTrigger_LastErrorQuality

This is the last error quality associated with the trigger program execution control input.
Refer to Appendix B: OPC Quality Flags for information about OPC data quality.

This item is present only if a data item is configured to trigger the program execution.
This may be done on the Settings Tab of the Math & Logic device or in the Advanced...
settings for the Math & Logic data item.

ProgramTrigger_LastErrorString

This is the last error code string associated with the trigger program execution control
input.

This item is present only if a data item is configured to trigger the program execution.
This may be done on the Settings Tab of the Math & Logic device or in the Advanced...
settings for the Math & Logic data item.

ProgramTrigger_LastValue

This is the last data value associated with the trigger program execution control input.

This item is present only if a data item is configured to trigger the program execution.
This may be done on the Settings Tab of the Math & Logic device or in the Advanced...
settings for the Math & Logic data item.

Math & Logic Help

Cyberlogic Technologies Inc. - 99 -

ProgramTrigger_UpdateCount

This counter contains the total update count for the trigger program execution control
input. This counter is incremented each time an OnDataChange callback delivers a new
value for the trigger program execution control input.

This item is present only if a data item is configured to trigger the program execution.
This may be done on the Settings Tab of the Math & Logic device or in the Advanced...
settings for the Math & Logic data item.

Debugging Aids

Once you have written it, your program may not work as expected. It may fail to compile
because of fatal syntax errors, it may compile successfully but not run, or it may run with
incorrect results.

To help you fix these problems, the Cyberlogic OPC server includes a number of
debugging tools.

Status Window

If the compiler detects errors in your code, it displays an explanation of these errors in
the status window.

Math & Logic Help

Cyberlogic Technologies Inc. - 100 -

In this example, line 4 has two operators in a row. The Status pane shows that the error
occurred in line 4 and gives a description of the problem. The red icon at the left side of
the Code View pane visually flags the error location.

Status Items

The status items are data items, available to any OPC client application, that provide key
information about the functioning of your program. You can find detailed information
about them in the Status Items section.

You can use the following procedure to evaluate your program at runtime:

1. Examine the Program_ExeCount status item to verify that the program is running.
This count will increment each time the program executes. If it is not increasing, the
program is not running.

2. Examine the Program_ErrorCount to see if any errors have been recorded. This data
item records the number of runtime errors that the software has detected.

Note The error counts for all programs can be reset to zero by an Off to On transition of the
ResetAllErrorCounts status item. This item is located in the _Status folder directly under
the Math & Logic device.

3. If the Program_ErrorCount is not 0, then check the Program_LastErrorString. This
string provides a description of the last detected runtime error.

Math & Logic Help

Cyberlogic Technologies Inc. - 101 -

DebugOutput Function

It is frequently helpful to be able to see the values of internal variables as the program is
running. The DebugOutput function allows you to do this. With it, you can output any
value in the program to a data item that is available for viewing in an OPC client
application.

Writing to debug outputs extends the execution time. Therefore, you should remove or
comment out all DebugOutput calls once the program is running as desired.

Public Variables

You can declare typed variables in your program to be public. These Public Variables will
then be available to the OPC clients, appearing just as regular, configured OPC data
items. This makes it very easy for you to view these variables during program execution.

It is important to understand, however, that writing to public variables is much slower
than writing to local variables. If you make a variable public for debugging, you should
change it back to a local variable after the program is running as desired.

Math & Logic Help

Cyberlogic Technologies Inc. - 102 -

APPENDIX A: C-LOGIC LANGUAGE REFERENCE

You use the C-logic programming language to write the Math & Logic programs. Its
syntax is similar to the C programming language, as you can see in the following sample
program. The program demonstrates the use of local variables, comments, "if"
statements, function calls, and simple arithmetic expressions. It also demonstrates how
the result is returned.

Note
To provide you with additional examples, the software also includes a configuration file
with a set of sample programs. These will help you to understand how the various
functions work. They will also give you ideas about what you can do with C-logic, and
they can be modified and used in creating your own programs. You will find a listing of
some of the sample programs in Appendix D: Sample Programs.

This program adds the absolute values of three data items, excluding those that have a
bad quality. The local variable declarations are at the top of the program, followed by the
executable statements.

ITEM x ("Device.Folder.ItemX"); // Item ID, default sampling & deadband

ITEM y ("Device.Folder.ItemY",50,10); // Item ID, sampling rate, deadband

ITEM z ("Device.Folder.ItemZ",,10.0); // Item ID, default sampling, deadband

VAR varX; // Local variable for X

VAR varY; // Local variable for Y

VAR varZ; // Local variable for Z

VAR varResult; // Result

varX = 0;

varY = 0;

varZ = 0;

if(IsQualityBAD(x) && IsQualityBAD(y) && IsQualityBAD(z))

{

varResult.Quality = QUALITY_SENSOR_FAILURE;

}

else

{

if(!IsQualityBAD(x))

{

varX = abs(x);

}

if(!IsQualityBAD(y))

{

varY = abs(y);

}

if(!IsQualityBAD(z))

{

varZ = abs(z);

}

varResult = varX + varY + varZ;

}

return varResult;

Math & Logic Help

Cyberlogic Technologies Inc. - 103 -

General Rules

You must place all local declarations for constants and variables at the beginning of the
program, before any executable statements.

All names and keywords in the language are case-insensitive. Numeric values that
contain letters (0t47, 0x5FC2, -2.5e-4) are also case-insensitive. However, character and
string values ('A', "Crosslink") are case-sensitive.

At the start of each program execution, the values of all public variables and variables of
type ITEM are set to the current values of their associated data items. If the OPC server
receives new data from an external device, the OPC data items’ values will be updated,
but the new values will not be applied to the corresponding local variables until the
beginning of the next program execution. For more information on data item variables,
refer to the Data Item Declarations section.

Variables used in expressions must have GOOD or UNCERTAIN quality, or the expression
cannot be evaluated. For the result to have GOOD quality, all operands must have GOOD
quality. If any operands have UNCERTAIN quality, the result will have UNCERTAIN
quality. An attempt to operate on a variable with BAD quality will terminate the
processing of the expression and generate an error.

If a statement, function or expression generates an error, the current execution of the
program is terminated. The error count is incremented, and the error information is
reported through the program’s Data Item Status items.

A conversion between signed and unsigned integers of different lengths generates an
overflow error if the requested type cannot hold the value. For example:

 A signed 16-bit integer value of –1 will overflow if you try to convert it to an
unsigned 8-bit integer.

 An unsigned 16-bit integer value of 255 will overflow if you try to convert it
to a signed 8-bit integer.

 The same rules apply to conversions between any pair of integers of 8, 16,
32 or 64 bits, when the lengths are different.

However, for conversions between signed and unsigned integers with the same number
of bits, the value is not checked for overflow. For example:

 A signed 8-bit integer value of –1 will convert to an unsigned 8-bit integer
value of 255.

 An unsigned 8-bit integer value of 254 will convert to a signed 8-bit integer
value of –2.

 The same rules apply to conversions between any pair of integers of 8, 16,
32 or 64 bits, when the lengths are the same.

Comments

The C-logic compiler supports single-line comments. Comments begin with two forward
slashes (//) and are terminated by the next new line character. They cannot extend to a
second line.

Math & Logic Help

Cyberlogic Technologies Inc. - 104 -

// This is a valid comment

Comments do not affect the generated code or the program's execution speed, but
greatly improve readability.

Constants

There are three types of constants:

 Integer Constants (decimal, hex, octal, binary, character)

 Floating Point Constants

 String Constants

Several commonly-used constants are predefined and need not be declared. You will find
a list of these in the Predefined Constants section.

The Linear Conversion Sample Program and Two Sines Sample Program include
examples of the use of constants.

Integer Constants

Integer constants can be of type decimal, hexadecimal, octal or binary. Decimal numbers
must not contain a decimal point.

The format is: [whitespace] [{+ | –}] [0 { x | X | t | T| b | B}] [digits]

Binary, octal and hexadecimal constants are always taken as a 64-bit signed integer, with
the most significant bit extended to fill any unspecified bit positions. Therefore, if the
value you specify has 1 as the most significant bit, it will be interpreted as a negative
number. To force such a value to be interpreted as positive, you must add a leading 0.

For example, 0xFF will be taken as -1. Its MSB is 1, and that will be extended to produce
the 64-bit signed integer FFFFFFFFFFFFFFFF. If you intend it to be taken as 255, you
must enter the value as 0x0FF. Doing so forces the MSB to be 0, and the 64-bit
representation will then be 00000000000000FF.

This is a concern for binary numbers with a most significant bit of 1, octal numbers with
a most significant digit in the range 4-7, and hexadecimal numbers with a most
significant digit in the range of 8-F.

This is not an issue for decimal numbers, because they are always assumed to be
positive unless the "–" sign is present.

Here are some examples:

100 // Decimal number

0x12 // Hexadecimal number (18)

0x82 // Hexadecimal number (-126)

0x082 // Hexadecimal number (130)

0t12 // Octal number (10)

0t72 // Octal number (-6)

Math & Logic Help

Cyberlogic Technologies Inc. - 105 -

0t072 // Octal number (58)

0b101 // Binary number (-3)

0b0101 // Binary number (5)

Character Constants

Character constants are also integer constants. They consist of a character enclosed in
single quotation marks. For example:

'A' // ASCII A

' ' // Space character

Escape Sequences

Escape sequences are character combinations that consist of a backslash (\) followed by
a letter or by a combination of digits. They provide literal representations of carriage
control codes, nonprinting characters, and other characters that have special meanings.
If you want to create a character constant that contains one of these special characters,
you must use an escape sequence. An escape sequence is regarded as a single
character, and is therefore valid as an integer constant.

The following table lists the ANSI escape sequences supported by C-logic and the
characters they represent.

ANSI Escape Sequences

Escape Sequences Represented Character

\a Bell (alert)

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\' Single quotation mark

\" Double quotation mark

\\ Backslash

\xhhhh Unicode character in hexadecimal notation.

If a backslash precedes a character that does not appear in the table, the character is
undefined. The compiler handles this undefined character as the character itself. For
example, \c is treated as c.

Some escape sequence examples:

x = '\n'; // Set x to new line character

Math & Logic Help

Cyberlogic Technologies Inc. - 106 -

x = '\x221e'; // Set x to Unicode 0x221e (infinity sign)

Floating Point Constants

A floating-point constant is a decimal number that represents a signed real number. It
includes an integer portion, a fractional portion, and an exponent.

You can omit either the digits before the decimal point (the integer portion), or the digits
after the decimal point (the fractional portion), but not both. You can omit the decimal
point only if you include an exponent. No white-space characters are permitted. Here are
some examples:

100. // = 100.0

100.25 // = 100.25

1.575E1 // = 15.75

1575e-2 // = 15.75

-2.5e-3 // = -0.0025

25E-4 // = 0.0025

100 // INVALID: no decimal point and no exponent

-2.5 e-3 // INVALID: contains a space

String Constants

A string constant is a sequence of characters enclosed in double quotes ("). As part of
the string, you may want to include one of the special characters listed in the ANSI
Escape Sequences table. To do this, simply include its escape sequence in the string.
Here are some examples:

"Hello" // String text

"123" // Numeric string

"I use \"double quotes\"" // String with double quotes

"I use \\ single backslash" // String with a backslash

"A one in Chinese is \x4e00" // String with a Unicode character

You can use numeric string constants in arithmetic expressions. They will be converted to
numbers before the expression is evaluated. For example:

x = y + "123"; // This is a legal expression

x = y + "123abc"; // This is an illegal expression

Predefined Constants

Several commonly-used constants are predefined, and need not be declared. Here is a
list of these constants:

Math & Logic Help

Cyberlogic Technologies Inc. - 107 -

Constant Name Value Description

true -1 Boolean true

false 0 Boolean false

pi 3.14159... (39 digits) Math constant pi

e 2.71828... (39 digits) Math constant e

QUALITY_GOOD 0xC0 GOOD quality, non-specific

QUALITY_LOCAL_OVERRIDE 0x0D8 GOOD quality, local override

QUALITY_BAD 0x00 BAD quality, non-specific

QUALITY_CONFIG_ERROR 0x04 BAD quality, configuration error

QUALITY_NOT_CONNECTED 0x08 BAD quality, not connected

QUALITY_DEVICE_FAILURE 0x0c BAD quality, device failure

QUALITY_SENSOR_FAILURE 0x10 BAD quality, sensor failure

QUALITY_LAST_KNOWN 0x14 BAD quality, last known value

QUALITY_COMM_FAILURE 0x18 BAD quality, communication failure

QUALITY_OUT_OF_SERVICE 0x1C BAD quality, out of service

QUALITY_WAITING_FOR_INITIAL_DATA 0x20 BAD quality, waiting for initial data

QUALITY_UNCERTAIN 0x40 UNCERTAIN quality, non-specific

QUALITY_LAST_USABLE 0x44 UNCERTAIN quality, last usable value

QUALITY_SENSOR_CAL 0x50 UNCERTAIN quality, sensor not accurate

QUALITY_EGU_EXCEEDED 0x54 UNCERTAIN quality, engineering units
exceeded

QUALITY_SUB_NORMAL 0x58 UNCERTAIN quality, sub-normal

QUALITY_LIMIT_OK 0x00 Not limited

QUALITY_LIMIT_LOW 0x01 Low limited

QUALITY_LIMIT_HIGH 0x02 High limited

QUALITY_LIMIT_CONST 0x03 Constant

S_OK 0x00000000 SUCCESS OK

S_FALSE 0x00000001 SUCCESS Some failures occurred

E_FAIL 0x80004005 ERROR The operation failed

E_INVALIDARG 0x80070057 ERROR Invalid Argument

E_ACCESSDENIED 0x80070005 ERROR Not Authorized

Math & Logic Help

Cyberlogic Technologies Inc. - 108 -

Local Declarations

You must place all local declarations at the beginning of the program, before any
executable statements. There are four types of local declarations:

 Constant Declarations

 Data Item Declarations

 Typed, Untyped and Public Variable Declarations

 Date & Time Variable Declarations

Each variable has a set of Standard Variable Properties that you can access within your
program. The Date & Time Variables have additional properties related to date and time,
as explained in the Date & Time Variable Declarations section.

Constant Declarations

A constant declaration assigns a name to a constant. You can then use the name in your
program in place of the actual constant value. Here is the syntax:

CONST Name (Value);

Where:

Name Unique name assigned to this constant.

Value Constant value.

Examples:

CONST ItemId ("Device.Folder.ItemX"); // String constant

CONST BitMask (0x03); // Integer constant

CONST Multiplier (100.5); // Floating point constant

Data Item Declarations

An item declaration assigns a variable name to an OPC data item. This declaration is
required before you can use the value and properties of that data item within your
program.

Caution!
At the start of each program execution, the values of all public variables and variables
of type ITEM are set to the current values of their associated data items. If the OPC
server receives new data from an external device, the OPC data items’ values will be
updated, but the new values will not be applied to the corresponding local variables
until the beginning of the next program execution.

Item declarations use the following syntax:

ITEM ItemName (ItemID[,SamplingInterval[,Deadband[,ExcludeFromOnDataChangeTrigger]]]);

Math & Logic Help

Cyberlogic Technologies Inc. - 109 -

Where:

ItemName Unique variable name assigned to this item.

ItemID Item ID string for the OPC data item. This can either be
a full or relative Item ID. See below for more
information on relative Item IDs.

SamplingInterval Optional sampling interval in milliseconds. The valid
range is 20-4000000000. When specified, it overrides
the default sampling interval set at the device level. If
not used, it must be left blank.

Deadband Optional deadband in percent of full scale. The valid
range is 0.0 to 100.0. When specified, it overrides the
default deadband set at the device level. If not used, it
must be left blank.

ExcludeFrom
OnDataChangeTrigger Optional flag. When true, it excludes this data item from

triggering On Data Change executions of a program.
Commonly used when declaring data items that are used
only as outputs. If omitted, it defaults to false.

Examples:

ITEM x ("Device.Folder.ItemX"); // Item ID, default sampling & deadband

ITEM x ("Device.Folder.ItemY",50); // Item ID, sampling, default deadband

ITEM x ("Device.Folder.ItemY",50,10); // Item ID, sampling & deadband

ITEM x ("Device.Folder.ItemZ",,10.5); // Item ID, default sampling, deadband

ITEM x ("Device.Folder.Out1",,,true); // Exclude from On Data Change trigger

In addition to the full Item IDs, the ItemID string can specify a data item reference that
is relative to the data item being programmed. Here are the rules for creating relative
Item IDs:

 An empty string ("") identifies the current data item.

 Each period ('.') in front of the Item ID represents one level back from the
current data item.

Examples:

ITEM x ("Device.Folder.Program"); // Current program's Item ID

ITEM x (""); // Same as above

ITEM x (".ItemX"); // Same as "Device.Folder.ItemX"

ITEM x ("..Folder2.ItemY"); // Same as "Device.Folder2.ItemY"

You cannot write to individual properties of variables of type ITEM. You can modify them
only by assigning a new value to the entire item variable.

Example:

ITEM x ("ItemId");

x.Quality = QUALITY_SENSOR_FAILURE; // Invalid

x = y; // Valid (y.Quality may be BAD)

Math & Logic Help

Cyberlogic Technologies Inc. - 110 -

The ability to write to ITEM variables is one way you can create programs with multiple
outputs; another way is to use Public Variables. An assignment to an ITEM variable
updates the server's cache for the associated data item. This type of assignment persists
between program executions.

Caution!
If a variable of type ITEM is associated with a bit or register in an external device, the
assignment will not initiate a write to that device. Only the cached value in the server
will be updated.

Furthermore, it is likely that the assigned data will be overwritten when the server
obtains new data from the external device. Therefore, you should assign values to data
items only if they are simulated with the Echo simulation selection.

If you need to write to an external device, setup a crosslink that is triggered from your
program. Refer to the OPC Crosslink Help for more information.

Caution!
Assignments to ITEM variables are much slower than similar assignments to the local
variables. Avoid multiple assignments to the same variable during the same program
execution.

Typed, Untyped and Public Variable Declarations

A variable declaration creates a local or public variable and assigns it a name. This
declaration is required before you can use the variable within your program.

Local variables may be typed or untyped. When the program makes an assignment to a
typed variable, it converts the value to the variable's type. When it makes an assignment
to an untyped variable, the variable's value assumes the type of the assigned expression.

Public variables are a form of typed variable with the added capability of being browsed
and read just like a configured OPC server data item.

Arrays of typed local and public variables are also supported.

Local and public variables support the Standard Variable Properties. The Timestamp
property of all local variables is initialized to the current time at the start of each program
execution. This value will change when the program makes assignments to a variable or
to its Timestamp property. The Timestamp of public variables, however, is modified only
during the variable assignments, and individual writes to the Timestamp property (as well
as Quality and Error) are not allowed.

Untyped Variables

Here is the syntax for an untyped local variable declaration:

VAR Name [(Value)];

Where:

OPC_Crosslink_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 111 -

Name Unique name assigned to this variable.

Value Optional initialization value. If not used, the variable will
default to BAD quality and no data value.

Example:

VAR varX; // Uninitialized untyped variable

var x(5); // Untyped variable initialized to 5

Untyped variables support the Standard Variable Properties. The Quality and Error
properties of uninitialized untyped variables are set as follows:

Quality = QUALITY_BAD; // BAD quality

Error = 0x80004005; // Failure code E_FAIL

Initialized untyped variables are set to their initialization value only once. This is done
when the variable is created, which happens before the first program execution.
Subsequent changes to the variable's value are persistent across program executions.
Therefore, each program execution starts with variables whose values are the same as
they were at the end of the previous program execution.

Caution!
Data assigned to typed and untyped variables persists between program executions,
but does not persist following the Save & Update Server operation. All local variables
are reinitialized each time a Save & Update Server is done.

Use public variables if it is crucial that your variables persist across the Save & Update
Server operations.

Typed Variables

Here is the syntax for the typed local variable declarations:

VarType Name [(Value)];

VarType Name[NumberOfElements[,LowerBound]] [({Value, ...})]; // Array

Where:

Name Unique name assigned to this variable.

Value Optional initialization value(s). If not used for all
elements of an array, the unused positions must be left
blank, and those elements will initialize to the default
value for their data type.

NumberOfElements Number of elements in the array.

LowerBound Optional lower bound value for the array. If not used, it
defaults to 0.

VarType Variable type that can be one of the following:

Math & Logic Help

Cyberlogic Technologies Inc. - 112 -

Note
A Variable Type entry in the following table may contain multiple names. Each of these
names are equivalent and can be used interchangeably.

Variable Type Description

bool, boolean, VT_BOOL Binary boolean (true or false)

string, VT_BSTR String

sbyte, VT_I1 Signed 8-bit integer

int16, VT_I2 Signed 16-bit integer

int32, VT_I4 Signed 32-bit integer

int, int64, VT_I8 Signed 64-bit integer

byte, VT_UI1 Unsigned 8-bit integer

uint16, VT_UI2 Unsigned 16-bit integer

uint32, VT_UI4 Unsigned 32-bit integer

uint64, VT_UI8 Unsigned 64-bit integer

float, VT_R4 IEEE 32-bit floating point number

double, VT_R8 IEEE 64-bit floating point number

VT_CY Currency

VT_DATE Date

Examples:

int nNumber; // Signed 64-bit integer variable

int x(5); // Signed 64-bit integer initialized to 5

double nNumber; // IEEE 64-bit floating point variable

bool bFlag; // Boolean flag

VT_BOOL bFlag; // Boolean flag

VT_R8 aArray[10]; // Array of type VT_R8 with lower bound = 0

VT_R8 aArray[10,1]; // Array of type VT_R8 with lower bound = 1

VT_R8 aArray[2] ({1,2}); // Array of type VT_R8 initialized to 1 and 2

Typed variables support the Standard Variable Properties. The Quality and Error
properties of uninitialized typed variables are set as follows:

Quality = QUALITY_BAD; // BAD quality

Error = 0x80004005; // Failure code E_FAIL

Initialized typed variables are set to their initialization value(s) only once. This is done
when the variable is created, which happens before the first program execution.
Subsequent changes to the variable's value are persistent across program executions.
Therefore, each program execution will start with variables whose values are the same
as those at the end of the previous program execution.

Math & Logic Help

Cyberlogic Technologies Inc. - 113 -

Caution!
Data assigned to typed and untyped variables persists between program executions,
but does not persist following the Save & Update Server operation. All local variables
are reinitialized each time a Save & Update Server is done.

Use public variables if it is crucial that your variables persist across the Save & Update
Server operations.

Public Variables

Public variables are a form of typed variable with the added capability of being browsed
and read just like any configured OPC server data item.

Unlike the ITEM variables, which refer to data items that already exist in the server's
address space, public variables need not be configured outside of a program. They are
automatically added to the folder named ${Item Name}, which is located in the same
folder as the associated data item.

Public variables are convenient for defining inputs and outputs for a program. They can
also help you debug a program by temporarily making all or some of the program's
variables public. By doing so, internal variables are made externally visible, so that you
can monitor them during the program execution.

Caution!
At the start of each program execution, the values of all public variables and variables
of type ITEM are set to the current values of their associated data items. If the OPC
server receives new data from an external device, the OPC data items’ values will be
updated, but the new values will not be applied to the corresponding local variables
until the beginning of the next program execution.

Caution!
Assignments to public variables are much slower than similar assignments to local
variables. Therefore, you should not declare all variables public, except when
debugging.

Here is the syntax for the public variable declarations:

public VarType Name
[(Value[,DisableWrites [,SamplingInterval[,Deadband[,ExcludeFromOnDataChangeTrigger]]]])];

public VarType Name[Elements[,LowerBound]]
[({Value,...}[,DisableWrites [,SamplingInterval[,Deadband[,ExcludeFromOnDataChangeTrigger]]]])];

VarType Variable type that is specified in the same manner as for
typed variables.

Name Unique name assigned to this variable.

Value Optional initialization value(s). If not used for all
elements of an array, the unused positions must be left
blank, and those elements will initialize to the default
value for their data type.

Math & Logic Help

Cyberlogic Technologies Inc. - 114 -

DisableWrites Boolean flag indicating whether external writing to the
variable should be disabled. Note, however, that
assignments inside a program are always enabled.
Defaults to false if not specified.

SamplingInterval Optional sampling interval in milliseconds. The valid
range is 20-4000000000. When specified, it overrides
the default sampling interval set at the device level. If
not used, it must be left blank.

Deadband Optional deadband in percent of full scale. The valid
range is 0.0 to 100.0. When specified, it overrides the
default deadband set at the device level. If not used, it
must be left blank.

ExcludeFrom
OnDataChangeTrigger Optional flag. When true, it excludes this data item from

triggering On Data Change executions of a program.
Commonly used when declaring data items that are used
only as outputs. If omitted, it defaults to false.

NumberOfElements Number of elements in the array.

LowerBound Optional lower bound value for the array. If not used, it
defaults to 0.

Examples:
public int x; // Uninitialized, all defaults

public int x(5); // Initialized, rest default

public double x[10]({1,2,3}); // Initialized public array

public int x(5,,100); // Initialized, sample @ 100 ms

public double x[10]({1,2,3},true, 100,,true);

 // Partly-initialized array, disable writes,

 // sample at 100 ms, exclude from ODC triggering

Unlike untyped and typed local variables, uninitialized public variables initialize to the
default value for their data type: zero for numeric types, and an empty string for strings.

Initialized public variables are set to their initialization values only once. This is done
when the variable is created, which happens before the first program execution.
Subsequent changes to the variable's value are persistent across program executions.
Therefore, each program execution will start with variables whose values are the same
as those at the end of the previous program execution, unless they were written to
externally.

Note
Data assigned to public variables persists between program executions and Save &
Update Server operations. This is different than the typed and untyped local variables,
which are reinitialized each time a Save & Update Server is done.

Public variables support the Standard Variable Properties. Similar to the ITEM variables,
you cannot write to the individual properties of public variables. You can modify them
only by assigning a new value to the entire variable.

Math & Logic Help

Cyberlogic Technologies Inc. - 115 -

Example:

public int x;

x.Quality = QUALITY_SENSOR_FAILURE; // Invalid

x = y; // Valid (y.Quality may be BAD)

Date & Time Variable Declarations

A date and time variable declaration creates a variable of type DATETIME. This type of
variable simplifies date and time manipulations. Date and time declarations use the
following syntax.

DATETIME Name[(Type)];

Where:

Name Unique name assigned to this variable.

Type Optional time zone type. Valid values are UTC
(Coordinated Universal Time) or Local. If not specified, it
defaults to Local.

Variables of type DATETIME have the Standard Variable Properties, and the following
additional properties. These are interpreted as either Local or UTC time, according to the
Type setting. They can be read and written individually. The initial setting for DATETIME
variables is January 1, 2010 at 00:00:00.000

Year Valid range is 1601 to 30827

Month January = 1
February = 2
March = 3
April = 4
May = 5
June = 6
July = 7
August = 8
September = 9
October = 10
November = 11
December = 12

DayOfWeek Sunday = 0
Monday = 1
Tuesday = 2
Wednesday = 3
Thursday = 4
Friday = 5
Saturday = 6

Day Day of the month. Valid range is 1 to 31.

Hour Valid range is 0 to 23

Math & Logic Help

Cyberlogic Technologies Inc. - 116 -

Minute Valid range is 0 to 59

Second Valid range is 0 to 59

Milliseconds Valid range is 0 to 999

You can access DATETIME variables directly, in which case the value is an OPC-
compatible timestamp. An OPC timestamp is a 64-bit signed integer (int64) value equal
to the number of 100-nanosecond intervals since January 1, 1601. It is always expressed
in UTC time.

Example:

// Time in seconds since 12:00 am, Jan 30, 2009

ITEM x ("Device.Folder.TimeInSeconds");

VAR varString;

DATETIME dt;

// Set start time to 12:00 am, Jan 30, 2009

dt.Year = 2009;

dt.Month = 1;

dt.Day = 30;

dt.Hour = 0;

dt.Minute = 0;

dt.Second = 0;

dt.Milliseconds = 0;

// Add seconds since the start time

dt = AddSeconds(dt, x);

// Format the output string

varString = Format("Reported time & date: %d/%d/%d %d:%d:%d\n",

dt.Month, dt.Day, dt.Year, dt.Hour, dt.Minute, dt.Second);

return varString;

The Array to Date & Time Sample Program and Time in Your Time Zone #1 Sample
Program also include examples of the use of date and time declarations and properties.

Standard Variable Properties

All variable types have the following standard properties.

Value Data value

Quality Variable's quality

Timestamp Variable's timestamp of type DATETIME

Error Variable's error code

Examples:

x.Value // Value of x (same as x)

Math & Logic Help

Cyberlogic Technologies Inc. - 117 -

x.Quality // Quality of x

x.Timestamp // Timestamp of x (as 64-bit number)

x.Error // Error code of x

Properties of local variables can be read and written individually. ITEM and public
variable properties can be read, but cannot be written. When reading a property, the
returned quality is always GOOD, and the error code is set to zero (S_OK).

The Maintenance Time Tracking Sample Program and Linear Conversion Sample Program
include examples of how to test and set variable properties.

Expressions

The C-logic language supports four types of expressions:

 Arithmetic

 Relational

 Logical

 Bitwise

The evaluation of expressions is governed by the Operator Precedence and Associativity
rules.

The operands in an expression must have either GOOD or UNCERTAIN quality for the
expression to be fully evaluated. An operand with a BAD quality immediately stops the
evaluation of the remaining part of an expression, and causes the current program to
terminate. However, data with BAD quality can be assigned to a local variable without
terminating the program.

The following table summarizes the rules for determining the quality of an expression:

Rules for Determining the Quality of an Expression

Quality of the operands Quality assigned to the result

All GOOD GOOD

One or more UNCERTAIN, no BAD UNCERTAIN

One or more BAD BAD

The timestamp of an expression depends on whether the expression is just a single
variable with no operators (e.g. "x"), or it contains at least one operator (e.g. "x+y"). If
an expression contains an operator, the resulting timestamp is the current execution
time. Otherwise, the variable's timestamp is used.

Note
In a simple variable assignment, such as "x=y;", the Timestamp of x will be the same
as the Timestamp of y. However, if you would rather use the current time instead,
modify this assignment to include at least one operator (e.g. "x=+y;").

Math & Logic Help

Cyberlogic Technologies Inc. - 118 -

The following sections describe each type of expression in detail.

Arithmetic

The following arithmetic operations are supported.

Operator Description Example

+ Addition x + y

- Subtraction x - y

* Multiplication x * y

/ Division x / y

% Modulo (remainder after division) x % y

If all operands in an arithmetic expression are integers or booleans, they are converted
to 64-bit signed integers before the expression is evaluated, and the result of the
expression is also a 64-bit signed integer. Otherwise, the operands are converted to 64-
bit floating point (double) values, and the result is a 64-bit floating point value.

A special rule applies to addition with string operands. If all operands are strings, the
result of the addition is a string that is a concatenation of the operands.

Example:

x = "123" + "456"; // The result is "123456"

To force an arithmetic operation instead, use a numeric value for the first operand.

Example:

x = 0 + "123" + "456"; // The result is an integer value 479
x = 0.0 + "1.5" + "2"; // The result is a floating-point value 3.5

The Linear Conversion Sample Program also includes examples of arithmetic expressions.

Relational

The result of a relational expression is a value of type bool. The following relational
operations are supported.

Math & Logic Help

Cyberlogic Technologies Inc. - 119 -

Operator Description Example

< Less than x < y

> Greater than x > y

<= Less than or equal to x <= y

>= Greater than or equal to x >= y

== Equal to X == y

!= Not equal to x != y

If both operands in a relational expression are strings, they are compared using
lexicographic (dictionary) order. If both operands are integers or booleans, they are
converted to 64-bit signed integers (int) before the expression is evaluated. Otherwise,
the operands are converted to 64-bit floating point (double) values.

Logical

The operands in a logical expression are always converted to type bool before the
expression is evaluated. The result of the expression is also of type bool. The following
logical operations are supported.

Operator Description Example

&& AND x && y

|| OR x || y

! NOT !x

Bitwise

The operands in a bitwise expression are converted to 64-bit signed integers (int) before
the expression is evaluated. The result of the expression is also of type int. The following
bitwise operations are supported:

Operator Description Example

& AND x & 0x100

| OR x | 0x1

~ NOT ~x

^ XOR x ^ 0x01

Math & Logic Help

Cyberlogic Technologies Inc. - 120 -

Operator Precedence and Associativity

C-logic operators follow a strict precedence, which defines the evaluation order of
expressions. Operators associate with either the expression to their left or the expression
to their right, a property called "associativity". Operators with equal precedence are
evaluated left to right in an expression, unless explicitly forced by parentheses.

The following table shows the precedence and associativity of C-logic operators, from
highest to lowest precedence.

Precedence Operator Name or Meaning Associativity

1 . Member selection (for properties) Left to right

1 [] Array subscript Left to right

2 ~ One's complement Right to left

2 ! Logical not Right to left

2 - Unary minus Right to left

2 + Unary plus Right to left

3 * Multiplication Left to right

3 / Division Left to right

3 % Modulo Left to right

4 + Addition Left to right

4 - Subtraction Left to right

5 < Less than Left to right

5 > Greater than Left to right

5 <= Less than or equal to Left to right

5 >= Greater than or equal to Left to right

6 == Equality Left to right

6 != Inequality Left to right

7 & Bitwise AND Left to right

8 ^ Bitwise exclusive OR Left to right

9 | Bitwise inclusive OR Left to right

10 && Logical AND Left to right

11 || Logical OR Left to right

12 = Assignment Right to left

Statements

Programs consist of three types of executable statements:

Math & Logic Help

Cyberlogic Technologies Inc. - 121 -

 Conditional Branch (If-Else) Statements

 Assignment (=) Statements

 Return Statements

Conditional Branch (If-Else) Statements

The if-else statement controls conditional branching. The syntax is shown below. If the
value of expression is true, statement1 is executed. If the value of expression is false and
the optional else is present, statement2 is executed.

Syntax:

if (expression)
{
 statement1;
}
[else
{
 statement2;
}]

Where:

expression Any supported expression

statement1 Any executable statement or series of executable
statements

statement2 Any executable statement or series of executable
statements

Note
The program block delimiting characters ('{' and '}') in the "If" and the "else" sections
can be omitted if a block consists of a single executable statement.

Example:

if(x > y)

{

 z = x;

}

else

 z = y;

The Linear Conversion Sample Program also includes examples of conditional branch
statements.

Math & Logic Help

Cyberlogic Technologies Inc. - 122 -

Assignment (=) Statements

An assignment statement assigns the result of an expression to a variable.

Syntax:

VarName = expression;

Where:

VarName Variable name

expression Any supported expression

Example:

x = y;

circumference = 2*pi*radius;

An assignment to a variable modifies its value, and all of its properties. However, an
assignment to an array element does not change the quality, timestamp, or error code
for the whole array. An expression assigned to an array element must not have BAD
quality, or an exception will be generated and the program will terminate.

An assignment to a property of a local variable modifies only the selected property. If the
assigned expression has BAD quality, an exception will be generated and the program
will terminate. Assignments to individual properties for ITEM and public variables are not
allowed.

Note
An assignment to a local variable is not the same as an assignment to its Value
property; the variable assignment modifies the Value, and all other properties while an
assignment to the Value property modifies only that property.

If VarName is a typed local variable, the result of the expression is converted to the
variable type before the assignment. If VarName is a typed array, the element counts of
both arrays must match, however, the lower bound value of the VarName is preserved.
The assignment persists between program executions, but does not persist between
Save & Update Server operations.

If VarName is an untyped local variable (VAR), the result is not converted, but instead
the variable assumes the expression's data type. The assignment persists between
program executions, but does not persist between Save & Update Server operations.

If VarName is of type ITEM or public, the assignment will update the server's cache for
the associated data item. If VarName is a typed array, the element counts of both arrays
must match, however, the lower bound value of the VarName is preserved. This type of
assignment persists between program executions and Save & Update Server operations.

Caution!
If VarName is of type ITEM and is associated with a bit or register in an external
device, the assignment will not initiate a write to that device. Only the cached value in
the server will be updated.

Math & Logic Help

Cyberlogic Technologies Inc. - 123 -

Furthermore, it is likely that the assigned data will be overwritten when the server
obtains new data from the external device. Therefore, you should assign values to data
items only if they are simulated with the Echo simulation selection.

If you need to write to an external device, setup a crosslink that is triggered from your
program. Refer to the OPC Crosslink Help for more information.

Return Statements

The return statement ends the program execution and optionally returns a result of an
expression.

Syntax:

return [expression];

Where:

expression Any supported expression

Example:

return varResult; // End the program and return varResult

return; // End the program without changing the output

The result of the returned expression is converted to the data type of the data item
associated with the program. Its value is then assigned to that data item. Typically, a
program will have one return statement, but may have more than one, or none.

The Maintenance Time Tracking Sample Program is an example of a program that uses
multiple return statements.

OPC_Crosslink_Help.pdf

Math & Logic Help

Cyberlogic Technologies Inc. - 124 -

Math Functions

The supported math functions are:

Abs Calculates the absolute value of a number

Acos Calculates the inverse cosine (arc cosine) of a number

Asin Calculates the inverse sine (arc sine) of a number

Atan Calculates the inverse tangent (arc tangent) of a number

Ceil Calculates the smallest integer greater than or equal to a number

Cos Calculates the cosine of a number

Exp Calculates the exponential (natural antilogarithm) of a number

Floor Calculates the greatest integer less than or equal to a number

IsFiniteNumber Determines whether the given floating-point value is finite

IsValidNumber Checks a given floating-point value for not a number (NAN)

Ln Calculates the natural (base e) logarithm of a number

Log Calculates the common (base 10) logarithm of a number

Max Determines the greater of two numbers

Min Determines the lesser of two numbers

Pow Raises one number to the power of another number

Rand Generates a pseudorandom number

Round Rounds a value to a specified number of decimal places

Sin Calculates the sine of a number

Sqrt Calculates the square root of a number

Tan Calculates the tangent of a number

Math & Logic Help

Cyberlogic Technologies Inc. - 125 -

Abs

Calculates the absolute value of the argument.

Syntax

int Abs(int Expression)

double Abs(double Expression)

Where:

Expression The value for which you want the absolute value.

Return value

Returns the absolute value of Expression.

Remarks

For integer arguments, the Abs function returns an integer absolute value. For all other
types, the argument is converted to double and the result of type double is returned.

Examples

x = Abs(z);

y = Abs(a-b);

Math & Logic Help

Cyberlogic Technologies Inc. - 126 -

Acos

Calculates the arccosine (inverse cosine) of the argument.

Syntax

double Acos(double Expression)

Where:

Expression The cosine of the desired angle, limited to the range of 1
to -1.

Return value

Returns the arccosine of Expression in the range 0 to π radians.

Remarks

If the value of Expression is less than –1 or greater than 1, acos returns an indefinite.

Examples

x = Acos(0.3);

y = Acos(z);

Math & Logic Help

Cyberlogic Technologies Inc. - 127 -

Asin

Calculates the arcsine (inverse sine) of the argument.

Syntax

double Asin(double Expression)

Where:

Expression The sine of the desired angle, limited to the range of 1
to -1.

Return value

Returns the arcsine of Expression in the range – π /2 to π /2 radians.

Remarks

If the value of Expression is less than –1 or greater than 1, asin returns an indefinite.

Examples

x = Asin(0.3);

y = Asin(z);

Math & Logic Help

Cyberlogic Technologies Inc. - 128 -

Atan

Calculates the arctangent (inverse tangent) of the argument.

Syntax

double Atan(double Expression)

Where:

Expression The tangent of the desired angle.

Return value

Returns the arctangent of Expression in the range – π /2 to π /2 radians.

Examples

x = Atan(0.3);

y = Atan(z);

Math & Logic Help

Cyberlogic Technologies Inc. - 129 -

Ceil

Calculates the smallest integer greater than or equal to the argument.

Syntax

double Ceil(double Expression)

Where:

Expression The value for which you want the ceiling value.

Return value

Returns a double value representing the smallest integer greater than or equal to
Expression.

Remarks

Note that the return value is of type double, not int.

Examples

x = Ceil(2.7); // Returns 3

y = Ceil(-2.7); // Returns -2

Math & Logic Help

Cyberlogic Technologies Inc. - 130 -

Cos

Calculates the cosine of a specified angle.

Syntax

double Cos(double Angle)

Where:

Angle Desired angle in radians.

Return value

Returns the cosine of Angle.

Remarks

If Angle is greater than or equal to 263, or less than or equal to –263, a loss of
significance in the result occurs.

Examples

x = Cos(pi/2);

y = Cos(varAngle + varPhase);

Math & Logic Help

Cyberlogic Technologies Inc. - 131 -

Exp

Calculates the exponential (natural antilogarithm) of the argument.

Syntax

double Exp(double Expression)

Where:

Expression Desired exponent of e.

Return value

Returns the exponential (natural antilogarithm) of the argument. That is, the result is e
to the power Expression, where e is the base of the natural logarithm.

Remarks

The value of Expression must be in the range of -7.083964e+002 to 7.097827e+002.

Examples

x = Exp(3);

y = Exp(z);

Math & Logic Help

Cyberlogic Technologies Inc. - 132 -

Floor

Calculates the greatest integer less than or equal to the argument.

Syntax

double Floor(double Expression)

Where:

Expression The value for which you want the floor value.

Return value

Returns a double value representing the greatest integer less than or equal to
Expression.

Remarks

Note that the return value is of type double, not int.

Examples

x = Floor(2.7); // Returns 2

y = Floor(-2.7); // Returns -3

Math & Logic Help

Cyberlogic Technologies Inc. - 133 -

IsFiniteNumber

Determines whether the given floating-point value is finite.

Syntax

bool IsFiniteNumber(double Expression)

Where:

Expression The floating-point value to be evaluated.

Return value

Returns true if Expression is not infinite; that is, if –INF < Expression < +INF. It returns
false if Expression is infinite or NAN.

Remarks

NAN (Not a Number) is a floating-point value representing an undefined or
unrepresentable value.

Examples

x = IsFiniteNumber(2.5); // Returns true

Math & Logic Help

Cyberlogic Technologies Inc. - 134 -

IsValidNumber

Checks a given floating-point value for not a number (NAN).

Syntax

bool IsValidNumber(double Expression)

Where:

Expression The floating-point value to be evaluated.

Return value

Returns true if Expression is not a NAN; otherwise it returns false.

Remarks

NAN (Not a Number) is a floating-point value representing an undefined or
unrepresentable value.

Examples

x = IsValidNumber(2.5); // Returns true

Math & Logic Help

Cyberlogic Technologies Inc. - 135 -

Ln

Calculates the natural (base e) logarithm of the argument.

Syntax

double Ln(double Expression)

Where:

Expression The number for which you want to determine the
logarithm.

Return value

Returns the base e logarithm of Expression.

Remarks

The value of Expression must be greater than zero.

Examples

x = Ln(27.5);

y = Ln(z);

Math & Logic Help

Cyberlogic Technologies Inc. - 136 -

Log

Calculates the common (base 10) logarithm of the argument.

Syntax

double Log(double Expression)

Where:

Expression The number for which you want to determine the
logarithm.

Return value

Returns the base-10 logarithm of Expression.

Remarks

The value of Expression must be greater than zero.

Examples

x = Log(y);

pH = -1*Log(varConcH);

Math & Logic Help

Cyberlogic Technologies Inc. - 137 -

Max

Compares two numbers and returns the greater of the two.

Syntax

int Max(int Expression1, int Expression2)

double Max(double Expression1, double Expression2)

Where:

Expression1, Expression2 The values to compare.

Return value

Returns the value of the larger of the two arguments.

Remarks

For integer arguments, the Max function returns an integer value. For all other types, the
argument is converted to double and a result of type double is returned.

Examples

x = Max(a,b);

y = Max(varSetPoint,20);

Math & Logic Help

Cyberlogic Technologies Inc. - 138 -

Min

Compares two numbers and returns the lesser of the two.

Syntax

int Min(int Expression1, int Expression2)

double Min(double Expression1, double Expression2)

Where:

Expression1, Expression2 The values to compare.

Return value

Returns the value of the smaller of the two arguments.

Remarks

For integer arguments, the Min function returns an integer value. For all other types, the
argument is converted to double and a result of type double is returned.

Examples

x = Min(a,b);

y = Min(Evil1,Evil2); // Returns the lesser of two evils

Math & Logic Help

Cyberlogic Technologies Inc. - 139 -

Pow

Calculates the value of a base number raised to the power of an exponent.

Syntax

double Pow(double Base, double Exponent)

Where:

Base The value you want to raise to a power.

Exponent An expression whose value is the power to which Base
will be raised.

Return value

Returns the value of Base raised to the power of Exponent.

Remarks

Pow does not recognize integral floating-point values greater than 264, such as 1.0E100.

Examples

x = Pow(5,3); // Returns 125.0

y = Pow(3,5); // Returns 243.0

Math & Logic Help

Cyberlogic Technologies Inc. - 140 -

Rand

Generates a pseudorandom number.

Syntax

int Rand()

Return value

Returns pseudorandom integer in the range 0 to 0x0FFFFFFFF.

Remarks

The Rand function uses the operating system to generate cryptographically secure
random numbers.

Examples

x = Rand(); // Returns a pseudorandom value

Math & Logic Help

Cyberlogic Technologies Inc. - 141 -

Round

Rounds the value to the specified number of decimal places.

Syntax

double Round(double Number)

double Round(double Number, 0)

string Round(double Number, int Places)

Where:

Number The value to be rounded.

Places The number of decimal places in the rounded value.
Must be non-negative. If not specified, it defaults to 0.

Return value

Returns the value of Number rounded to the specified number of decimal places.

Remarks

If Places is zero, it will be possible to obtain a floating point value that exactly represents
the rounded number, so the return value is of type double.

If Places is greater than zero, it may not be possible to represent the exact value in
floating point form. Therefore, the return value is of type string.

Examples

x = Round(pi,2); // Returns "3.14"

y = Round(varTemp,1);

Math & Logic Help

Cyberlogic Technologies Inc. - 142 -

Sin

Calculates the sine of a specified angle.

Syntax

double Sin(double Angle)

Where:

Angle Desired angle in radians.

Return value

Returns the sine of Angle.

Remarks

If Angle is greater than or equal to 263, or less than or equal to –263, a loss of
significance in the result occurs.

Examples

x = Sin(2*pi);

y = Sin(varAngle);

The Two Sines Sample Program also includes examples of this function.

Math & Logic Help

Cyberlogic Technologies Inc. - 143 -

Sqrt

Calculates the square root of the argument.

Syntax

double Sqrt(double Expression)

Where:

Expression The value for which you want to determine the square
root.

Return value

Returns the square root of Expression.

Remarks

The value of Expression must not be negative.

Examples

x = Sqrt(25.);

y = Sqrt(varMeanSquare);

The Square Root Conversion Sample Program also includes examples of this function.

Math & Logic Help

Cyberlogic Technologies Inc. - 144 -

Tan

Calculates the tangent of a specified angle.

Syntax

double Tan(double Angle)

Where:

Angle Desired angle in radians.

Return value

Returns the tangent of Angle.

Remarks

If Angle is greater than or equal to 263, or less than or equal to –263, a loss of
significance in the result occurs.

Examples

x = Tan(pi/4);

y = Tan(varAngle);

Math & Logic Help

Cyberlogic Technologies Inc. - 145 -

String Functions

The supported string functions are:

Compare Compares two strings

Concat Concatenates two strings

Contains Determines if a specified string occurs within another string

EndOf Returns a string that is the end of a specified string

EndsWith Determines if the end of a string matches another specified string

Format Returns formatted data as a string

IndexOf Locates the first occurrence of a specified string within another string

Insert Inserts a string into another string

Length Determines the length of a string

Like Compares strings using wildcards

PadEnd Left-aligns a string by padding it on the right with a specified character

PadStart Right-aligns a string by padding it on the left with a specified character

Remove Removes a specified number of characters at a specified place in a string

Replace In a given string, replaces a specified string with another specified string

StartOf Returns a string that is the beginning of a specified string

StartsWith Determines if the beginning of a string matches another string

Substring Returns a string that is part of a specified string

ToLower Converts a string to lowercase

ToNumber Converts a string to a numeric value

ToString Converts an integer number to a string

ToUpper Convert a string to uppercase

Trim Removes a specified set of characters from both ends of a string

TrimEnd Removes a specified set of characters from the end of a string

TrimStart Removes a specified set of characters from the beginning of a string

Math & Logic Help

Cyberlogic Technologies Inc. - 146 -

Compare

Compares two specified String objects, ignoring or honoring their case.

Syntax

int Compare(string StringA, string StringB)

int Compare(string StringA, string StringB, bool IgnoreCase)

Where:

StringA First string to compare.

StringB Second string to compare.

IgnoreCase A boolean expression indicating whether the comparison
is case-sensitive. If true, the comparison is case-
insensitive. If not specified, it defaults to false.

Return value

Returns a 64-bit signed integer indicating the lexical (dictionary order) relationship
between the two strings.

Value Condition

Less than zero StringA is less than StringB.

Zero StringA equals StringB.

Greater than zero StringA is greater than StringB.

Examples

// Compare strings using case-insensitive compare

if(Compare(x, "Name", true) == 0)

{

 // Strings match

 ...

}

Math & Logic Help

Cyberlogic Technologies Inc. - 147 -

Concat

Concatenates two strings.

Syntax

string Concat(string String1, string String2)

Where:

String1, String2 Strings to be concatenated.

Return value

Returns the concatenation of String1 and String2.

Remarks

Two variables of type string can also be concatenated by using a plus sign ('+') in an
expression. For example, Concat("abc", "123") is equivalent to an expression: "abc" +
"123".

Examples

x = Concat("tech ","support"); // Returns "tech support"

Math & Logic Help

Cyberlogic Technologies Inc. - 148 -

Contains

Returns a boolean indicating whether the specified SeekString occurs within the String.

Syntax

bool Contains(string String, string SeekString)

bool Contains(string String, string SeekString, bool IgnoreCase)

Where:

String First string to compare.

SeekString Second string to compare.

IgnoreCase A boolean expression indicating whether the search is
case-sensitive. If true, the search is case-insensitive. If
not specified, it defaults to false.

Return value

Returns a boolean indicating whether the specified SeekString occurs within the String.

Remarks

Returns true if the SeekString occurs within the String, or if SeekString is the empty
string (""); otherwise, returns false.

Examples

Contains("text", "ex") // Returns true

Contains("text", "EX") // Returns false

Contains("text", "EX", true) // Returns true

Contains("text", "") // Returns true

Math & Logic Help

Cyberlogic Technologies Inc. - 149 -

EndOf

Returns a string that is the end of a specified string.

Syntax

string EndOf(string String, int Length)

Where:

String Provided string.

Length Specifies the number of characters in the resulting
string.

Return value

Returns a string equivalent to the substring of length Length that ends at the end of
String.

Examples

x = EndOf("Password: XB7A96",6); // Returns "XB7A96"

Math & Logic Help

Cyberlogic Technologies Inc. - 150 -

EndsWith

Determines whether the end of a string matches another specified string.

Syntax

bool EndsWith(string String, string EndString)

bool EndsWith(string String, string EndString, bool IgnoreCase)

Where:

String The string to be checked

EndString A string to compare to.

IgnoreCase A boolean expression indicating whether the search is
case-sensitive. If true, the search is case-insensitive. If
not specified, it defaults to false.

Return value

Returns true if EndString matches the end of String; otherwise returns false.

Remarks

Compares EndString to the substring at the end of String that is the same length as
EndString, and indicates whether they are equal. To be equal, EndString must be an
empty string, or match the end of String.

Examples

x = EndsWith("MBX Bridge", "Driver"); // Return false

y = EndsWith("MBX Driver", "Driver"); // Returns true

y = EndsWith("MBX Driver", "driver"); // Returns false

y = EndsWith("MBX Driver", "driver", true); // Returns true

Math & Logic Help

Cyberlogic Technologies Inc. - 151 -

Format

Returns formatted data as a string.

Syntax

string Format(string FormatString [,Argument] ...)

Where:

FormatString Format-control string.

Argument ... Optional arguments of type string, sbyte, int16, int32,
int64, float, double, byte, uint16, uint32, or uint64.

Return value

Returns a copy of FormatString in which the format items have been replaced by the
string equivalent of the corresponding Argument.

Remarks

Each Argument (if any) is converted and output according to the corresponding format
specification in FormatString. A null character is appended after the last character
written. Refer to Appendix C: Format Specification Fields for details on how the format
specifications are interpreted.

Examples

varString = Format("ItemX = %d\n", x);

The Time in Your Time Zone #1 Sample Program also includes examples of this function.

Math & Logic Help

Cyberlogic Technologies Inc. - 152 -

IndexOf

Reports the index of the first occurrence of the specified string within another string. The
search starts at a specified character position.

Syntax

int IndexOf(string String, string FindString)

int IndexOf(string String, string FindString, int StartIndex)

int IndexOf(string String, string FindString, int StartIndex, bool IgnoreCase)

Where:

String The string in which you will search for FindString.

FindString The string you are searching for within String.

StartIndex Indicates where to start the search. This index is zero-
based. If not specified, it defaults to 0.

IgnoreCase A boolean expression indicating whether the search is
case-sensitive. If true, the search is case-insensitive. If
not specified, it defaults to false.

Return value

Returns the zero-based index of the first occurrence of a specified string within another
string, starting from a specified position. If the search fails to locate a match, the
function returns a value of -1.

Examples

x = IndexOf("text", "ex"); // Returns 1

x = IndexOf("text", "EX"); // Returns -1

x = IndexOf("text", "EX", true); // Returns 1

The ABC to abc Sample Program also includes an example of this function.

Math & Logic Help

Cyberlogic Technologies Inc. - 153 -

Insert

Inserts a string into another string at a specified index position.

Syntax

string Insert(string String, int Index, int InsertString)

Where:

String The string in which InsertString will be inserted.

Index The position in String at which InsertString will be
inserted.

InsertString The string to be inserted.

Return value

Returns a new string equivalent to String but with InsertString inserted at position Index.

Remarks

If Index is equal to the length of String, InsertString is appended to the end of String.

Examples

x = Insert("abc", 2, "XYZ"); // Returns "abXYZc"

y = Insert("abc", 3, "XYZ"); // Returns "abcXYZ"

Math & Logic Help

Cyberlogic Technologies Inc. - 154 -

Length

Returns the length of the specified string.

Syntax

int Length(string String)

Where:

String Provided string.

Return value

Returns the number of characters in String, not including a terminating null character.

Examples

x = Length("Montana"); // Returns 7

y = Length(varFirstName);

Math & Logic Help

Cyberlogic Technologies Inc. - 155 -

Like

String compare with wildcards, ignoring or honoring case.

Syntax

bool Like(string String, string Pattern)

bool Like(string String, string Pattern, bool IgnoreCase)

Where:

String The string to search in.

Pattern The pattern to search for.

IgnoreCase A boolean expression indicating whether the search is
case-sensitive. If true, the search is case-insensitive. If
not specified, it defaults to false.

Return value

Returns true if a match is found; otherwise returns false.

Remarks

Searches for Pattern inside String and returns a boolean that indicates whether or not
Pattern is contained in String.

You can use the following symbols in Pattern to provide wildcard matches:

 * Accepts zero or more characters.

 ? Accepts any single character.

 # Accepts a single digit (0-9).

 [CharList] Accepts a single character if it is part of CharList.

 [!CharList] Accepts a single character if it is not part of CharList.

CharList can specify a range of characters by separating the lower and upper bounds of
the range with a hyphen (-). For example, [A-Z] results in a match if the corresponding
character position in String contains any uppercase letter. You can specify multiple
ranges in a single CharList (e.g. [A-Z0-9]).

Additional rules for CharList are:

Math & Logic Help

Cyberlogic Technologies Inc. - 156 -

 An exclamation point (!) at the beginning of CharList results in a match if any
character except the characters in CharList is found in String. When used outside
the brackets, the exclamation point matches itself.

 A hyphen (-) at the beginning (after an exclamation point, if one is used) or at
the end of CharList matches itself. In any other location within CharList, the
hyphen identifies a range of characters.

 When you use a range of characters, you must specify it in ascending sort order,
that is, from lowest to highest. [A-Z] is a valid CharList, but [Z-A] is not.

 The character sequence [] is considered a zero-length string ("").

Note

To match the special characters left bracket ([), question mark (?), number sign (#), or
asterisk (*), enclose them in brackets. You cannot use a right bracket (])within a
CharList to match itself, but you can use it outside a CharList as an individual
character.

Note
The Like function performs a character-by-character comparison of the String and the
Pattern strings. If these strings have different length, then the function will return
false, unless the * (asterisk) is used.

Examples

Like("text", "text") // Returns true

Like("text", "Text") // Returns false

Like("text", "Text", true) // Returns true

Like("text", "te*") // Returns true

Like("text", "te??") // Returns true

Like("text", "te?") // Returns false

Like("text", "t?xt") // Returns true

Like("text", "t[def]xt") // Returns true

Like("text", "te[abc]t") // Returns false

Like("text", "[a-z]ext") // Returns true

Like("text", "[a-z]e*") // Returns true

Like("text", "[a-z]e") // Returns false

Like("text", "t[!ab]xt") // Returns true

Like("text2", "text#") // Returns true

Math & Logic Help

Cyberlogic Technologies Inc. - 157 -

PadEnd

Left-aligns the characters in a string, padding on the right with a specified Unicode
character for a specified total length.

Syntax

string PadEnd(string String, int TotalLength)

string PadEnd(string String, int TotalLength, uint16 PaddingChar)

Where:

String String to be padded to the given length.

TotalLength Length of String after padding.

PaddingChar Unicode character to be used to pad String to the
desired length. If not specified, defaults to space.

Return value

A new string that is equivalent to String, but left-aligned and padded on the right with as
many PaddingChar characters as needed to create a length of TotalLength. Or, if
TotalLength is less than the length of String, a new string that is identical to String.

Remarks

If PaddingChar is not specified, it defaults to a space character.

Examples

x = PadEnd("Cyberlogic", 16, " "); // Returns "Cyberlogic "

x = PadEnd("Cyberlogic", 16); // Returns "Cyberlogic "

y = PadEnd(PartName, 9, "_");

Math & Logic Help

Cyberlogic Technologies Inc. - 158 -

PadStart

Right-aligns the characters in a string, padding on the left with a specified Unicode
character for a specified total length.

Syntax

string PadStart(string String, int TotalLength)

string PadStart(string String, int TotalLength, uint16 PaddingChar)

Where:

String String to be padded to the given length.

TotalLength Length of String after padding.

PaddingChar Unicode character to be used to pad String to the
desired length. If not specified, defaults to space.

Return value

A new string that is equivalent to String, but right-aligned and padded on the left with as
many PaddingChar characters as needed to create a length of TotalLength. Or, if
TotalLength is less than the length of String, a new string that is identical to String.

Remarks

If PaddingChar is not specified, it defaults to a space character.

Examples

x = PadStart("Cyberlogic", 16, ' '); // Returns " Cyberlogic"

x = PadStart("Cyberlogic", 16); // Returns " Cyberlogic"

y = PadStart(StationName, 4, '_');

Math & Logic Help

Cyberlogic Technologies Inc. - 159 -

Remove

Deletes a specified number of characters from a string beginning at a specified index
position.

Syntax

string Remove(string String, int Index)

string Remove(string String, int Index, int CharCount)

Where:

String The string in which characters will be deleted.

Index The position in String at which to begin deleting
characters.

CharCount The number of characters to delete.

Return value

A new string that is equivalent to String less specified number of characters.

Remarks

If CharCount is not specified, this function deletes all the characters from String
beginning at a specified Index position and continuing through the last position.

Examples

x = Remove("123abc456", 3, 3); // Returns "123456"

y = Remove("abc123", 3); // Returns "abc"

Math & Logic Help

Cyberlogic Technologies Inc. - 160 -

Replace

Replaces all occurrences of a specified string in the Source string, with another specified
string.

Syntax

string Replace(string Source, string OldString, string NewString)

string Replace(string Source, string OldString, string NewString, bool IgnoreCase)

Where:

Source Specifies the string to be modified.

OldString Specifies the portion of Source to be replaced.

NewString A string to replace all occurrences of OldString.

IgnoreCase A boolean expression indicating whether the search is
case-sensitive. If true, the search is case-insensitive. If
not specified, it defaults to false.

Return value

Returns a string equivalent to the Source string, but with all instances of OldString
replaced with NewString.

Remarks

If NewString is an empty string (""), all occurrences of OldString are removed.

Examples

x = Replace("Switch is open", "open", "closed");

 // The above returns "Switch is closed"

Math & Logic Help

Cyberlogic Technologies Inc. - 161 -

StartOf

Returns a string that is the beginning of a specified string

Syntax

string StartOf(string String, int Length)

Where:

String Provided string.

Length Specifies the number of characters in the resulting
string.

Return value

Returns a string equivalent to the substring of length Length that begins at start of
String.

Examples

x = StartOf("MBX OPC Server",3); // Returns "MBX"

Math & Logic Help

Cyberlogic Technologies Inc. - 162 -

StartsWith

Determines whether the beginning of a string matches another specified string.

Syntax

bool StartsWith(string String, string StartString)

bool StartsWith(string String, string StartString, bool IgnoreCase)

Where:

String The string to be checked.

StartString A string to compare to.

IgnoreCase A boolean expression indicating whether the search is
case-sensitive. If true, the search is case-insensitive. If
not specified, it defaults to false.

Return value

Returns true if StartString matches the beginning of String; otherwise returns false.

Remarks

Compares StartString to the substring at the beginning of String that is the same length
as StartString, and indicates whether they are equal. To be equal, StartString must be an
empty string, or match the beginning of String.

Examples

x = StartsWith("DHX Driver", "MBX"); // Returns false

y = StartsWith("MBX Driver", "MBX"); // Returns true

y = StartsWith("MBX Driver", "mbx"); // Returns false

y = StartsWith("MBX Driver", "mbx", true); // Returns true

Math & Logic Help

Cyberlogic Technologies Inc. - 163 -

Substring

Returns a string that is part of a specified string.

Syntax

string Substring(string String, int StartIndex)

string Substring(string String, int StartIndex, int Length)

Where:

String Provided string.

StartIndex Position within String of the first character of the desired
substring. This index is zero-based. Valid values are
between 0 and the length of String.

Length Number of characters in the desired substring.

Return value

Returns a string equivalent to the substring of length Length that begins at StartIndex in
String. If Length is not specified, the substring will continue through the end of String.

Returns an empty string ("") if Length is zero, or if Length is not specified and StartIndex
is equal to the length of String.

Returns an error if StartIndex plus Length is greater than the length of String.

Examples

x = substring("Cyberlogic",5,5); // Returns "logic"

x = substring("Cyberlogic",5); // Returns "logic"

Math & Logic Help

Cyberlogic Technologies Inc. - 164 -

ToLower

Convert a string to lowercase, using the default system locale.

Syntax

string ToLower(string String)

Where:

String The string to be converted.

Return value

Returns converted String in lowercase.

Remarks

The conversion depends on the default system locale, therefore different results may be
produced depending on the system language setting.

Examples

x = ToLower("DHX OPC Server"); // Returns "dhx opc server"

Math & Logic Help

Cyberlogic Technologies Inc. - 165 -

ToNumber

Converts a string to a numeric value according to a specified base.

Syntax

int ToNumber(string String)

int ToNumber(string String, int Base)

int ToNumber(string String, int Base, bool NumberOnly)

Where:

String The string to be converted to a number.

Base The base to be used to interpret the string's numeric
value. Acceptable values are 0, and 2 through 36. If not
specified, it defaults to 0.

 If Base is zero, the String must be in the following
format, and is interpreted accordingly:

 [whitespace] [{+ | –}] [0 { x | X | t | T| b | B}] [digits]

 If { x | X | t | T| b | B} is not specified, the base is
decimal.

NumberOnly A flag that specifies if the String must end with
characters that are part of the number. If NumberOnly is
false, the string can end with characters that are not
part of the number. If not specified, NumberOnly
defaults to true.

Return value

Returns the value represented in String according to a specified base.

Math & Logic Help

Cyberlogic Technologies Inc. - 166 -

Caution!
If Base is 0 or is not specified, then you must use the b|B|t|T|x|X notation to indicate
binary, octal or hexadecimal numbers. The specified value is always taken as a 64-bit
signed integer, with the most significant bit extended to fill any unspecified bit
positions. Therefore, if the value you specify has 1 as the most significant bit, it will be
interpreted as a negative number. To force such a value to be interpreted as positive,
you must add a leading 0.

For example, "0xFF" will be taken as -1. Its MSB is 1, and that will be extended to
produce the 64-bit signed integer FFFFFFFFFFFFFFFF. If you intend it to be taken as
255, you must enter the value as "0x0FF". Doing so forces the MSB to be 0, and the
64-bit representation will then be 00000000000000FF.

This is a concern for binary numbers with a most significant bit of 1, octal numbers
with a most significant digit in the range 4-7, and hexadecimal numbers with a most
significant digit in the range of 8-F.

This is not an issue for decimal numbers, because they are always assumed to be
positive unless the "–" sign is present.

Examples

x = ToNumber("FF",16); // Returns 255

x = ToNumber("0xFF"); // Returns -1

x = ToNumber("0x0FF"); // Returns 255

x = ToNumber("0x0FFzz",0,false); // Returns 255

y = ToNumber("0b101"); // Returns -3

y = ToNumber("0b0101"); // Returns 5

y = ToNumber("0t30"); // Returns 24

y = ToNumber("0t7"); // Returns -1

y = ToNumber("0t07"); // Returns 7

y = ToNumber(LotNumber,10);

Math & Logic Help

Cyberlogic Technologies Inc. - 167 -

ToString

Converts an integer number to a string according to a specified base.

Syntax

string ToString(int Number, int Base)

Where:

Number The number to be converted to a string.

Base The base to be used for the string representation of the
Number. The value must be in the range of 2-36.

Return value

Returns a string that represents a converted integer Number in the specified base.

Examples

x = ToString(230,16); // Returns "E6"

y = ToString(z,10);

Math & Logic Help

Cyberlogic Technologies Inc. - 168 -

ToUpper

Convert a string to uppercase, using the default system locale.

Syntax

string ToUpper(String)

Where:

String The string to be converted.

Return value

Returns converted String in uppercase.

Remarks

The conversion depends on the default system locale, therefore different results may be
produced depending on the system language setting.

Examples

x = ToUpper("DHX OPC Server"); // Returns "DHX OPC SERVER"

Math & Logic Help

Cyberlogic Technologies Inc. - 169 -

Trim

Removes all instances of a specified set of characters from the beginning and end of a
specified string.

Syntax

string Trim(string String)

string Trim(string String, string TrimChars)

Where:

String The string to be trimmed.

TrimChars A list of characters to remove from the beginning and
end of String.

Return value

Returns the string that remains after all occurrences of the characters in TrimChars are
removed from the beginning and end of String.

Remarks

The TrimChars parameter is optional. If not present, whitespace characters are trimmed
instead. The whitespace characters are: space, horizontal tab ('\t'), new line ('\n'),
carriage return ('\r'), form feed ('\f') and vertical tab ('\v').

Examples

x = Trim(" Adams ", " "); // Returns "Adams"

x = Trim(" Adams "); // Returns "Adams"

x = Trim("12Adams31", "123"); // Returns "Adams"

Math & Logic Help

Cyberlogic Technologies Inc. - 170 -

TrimEnd

Removes all instances of a specified set of characters from the end of a specified string.

Syntax

string TrimEnd(string String)

string TrimEnd(string String, string TrimChars)

Where:

String The string to be trimmed.

TrimChars A list of characters to remove from the end of String.

Return value

Returns the string that remains after all occurrences of the characters in TrimChars are
removed from the end of String.

Remarks

The TrimChars parameter is optional. If not present, whitespace is trimmed instead. The
whitespace characters are: space, horizontal tab ('\t'), new line ('\n'), carriage return
('\r'), form feed ('\f') and vertical tab ('\v').

Examples

x = TrimEnd(" Adams ", " "); // Returns " Adams"

x = TrimEnd(" Adams "); // Returns " Adams"

x = TrimEnd("12Adams31", "123"); // Returns "12Adams"

Math & Logic Help

Cyberlogic Technologies Inc. - 171 -

TrimStart

Removes all instances of a specified set of characters from the beginning of a specified
string.

Syntax

string TrimStart(string String)

string TrimStart(string String, string TrimChars)

Where:

String The string to be trimmed.

TrimChars A list of characters to remove from the beginning of
String.

Return value

Returns the string that remains after all occurrences of the characters in TrimChars are
removed from the beginning of String.

Remarks

The TrimChars parameter is optional. If not present, whitespace characters are trimmed
instead. The whitespace characters are: space, horizontal tab ('\t'), new line ('\n'),
carriage return ('\r'), form feed ('\f') and vertical tab ('\v').

Examples

x = TrimStart(" Adams ", " "); // Returns "Adams "

x = TrimStart(" Adams "); // Returns "Adams "

x = TrimStart("12Adams31", "123"); // Returns "Adams31"

Math & Logic Help

Cyberlogic Technologies Inc. - 172 -

Bitwise Functions

The supported bitwise functions are:

GetBitField Obtains the value of a specified field of bits in a number

SAR Shifts the bits of a number right, filling the left with the sign bit

SHL Shifts the bits of a number left, filling the right with zeros

SHR Shifts the bits of a number right, filling the left with zeros

Math & Logic Help

Cyberlogic Technologies Inc. - 173 -

GetBitField

Returns the value of a specified field of bits within a number.

Syntax

int GetBitField(int Number, int StartBit, int BitCount)

Where:

Number Number containing the desired bit field.

StartBit Zero-based index of the first bit of the desired bit field.

BitCount Number of bits in the desired bit field.

Return value

Returns the value of a specified field of bits within a number.

Remarks

This function shifts the specified Number right by the StartBit count, and then masks off
the high bits above the LS BitCount bits. As a result, the masked off high bits are always
cleared, and the returned result is not sign extended.

Examples

x = GetBitField(0xE6,2,4); // Returns 9

y = GetBitField(z,5,2);

Math & Logic Help

Cyberlogic Technologies Inc. - 174 -

SAR

Performs an arithmetic shift right of a numeric value.

Syntax

int SAR(int Number, int ShiftByCount)

Where:

Number Value to be shifted.

ShiftByCount Number of places to shift the bits of Number.

Return value

Returns an integer number that is the result of the specified arithmetic right shift.

Remarks

The SAR (shift arithmetic right) function shifts the bits in the Number argument to the
right (toward the less significant bit locations). For each shift count, the most significant
bit of the result is filled with the sign of the unshifted Number, and the least significant
bit is shifted out.

Examples

x = SAR(-4, 1); // Returns -2

y = SAR(-20, 2); // Returns -5

Math & Logic Help

Cyberlogic Technologies Inc. - 175 -

SHL

Performs a logical shift left of a numeric value.

Syntax

int SHL(int Number, int ShiftByCount)

Where:

Number Value to be shifted.

ShiftByCount Number of places to shift the bits of Number.

Return value

Returns an integer number that is the result of the specified logical left shift.

Remarks

The SHL (shift logical left) function shifts the bits in the Number argument to the left
(toward the more significant bit locations). For each shift count, the most significant bit
of the result is shifted out, and the least significant bit is cleared.

Examples

x = SHL(1, 1); // Returns 2

y = SHL(5, 2); // Returns 20

Math & Logic Help

Cyberlogic Technologies Inc. - 176 -

SHR

Performs a logical shift right of a numeric value.

Syntax

int SHR(int Number, int ShiftByCount)

Where:

Number Value to be shifted.

ShiftByCount Number of places to shift the bits of Number.

Return value

Returns an integer number that is the result of the specified logical right shift.

Remarks

The SHR (shift logical right) function shifts the bits in the Number argument to the right
(toward the less significant bit locations). For each shift count, the most significant bit of
the result is cleared, and the least significant bit is shifted out.

Examples

x = SHR(4, 1); // Returns 2

y = SHR(20, 2); // Returns 5

Math & Logic Help

Cyberlogic Technologies Inc. - 177 -

Date & Time Functions

The supported date and time functions are:

AddSeconds Adds an interval in seconds to a DATETIME variable

FormatDate Formats a DATETIME value as a string containing the date

FormatTime Formats a DATETIME value as a string containing the time

GetTimeZoneOffset Provides the time zone offset in seconds

TimeNow Provides the current time

Math & Logic Help

Cyberlogic Technologies Inc. - 178 -

AddSeconds

Adds an interval in seconds to a specified variable of type DATETIME.

Syntax

DATETIME AddSeconds(DATETIME DateTime, double Seconds)

Where:

DateTime Date and time value.

Seconds The number of seconds you want to add to DateTime.

Return value

Returns a DATETIME-compatible UTC value that represents the date and time after
Seconds have been added to DateTime.

Remarks

When a DATETIME variable is accessed directly, it represents an OPC timestamp-
compatible 64-bit signed integer (int64) value. Therefore, it is a common practice to pass
an integer value for the DateTime parameter.

Examples

// Add 10.5 seconds to the item's timestamp

x.Timestamp = AddSeconds(x.Timestamp, 10.5);

The Time in Your Time Zone #1 Sample Program also includes examples of this function.

Math & Logic Help

Cyberlogic Technologies Inc. - 179 -

FormatDate

Formats a value of type DATETIME as a string containing the date in the local locale.

Syntax

string FormatDate(DATETIME DateTime)

Where:

DateTime Date and time value.

Return value

Returns a string representing the date in the local locale.

Remarks

The date is always formatted according to the locale (language) for the system and
represents the local date, even if the DateTime variable was configured for the UTC time
zone.

When a DATETIME variable is accessed directly, it represents an OPC timestamp-
compatible 64-bit signed integer (int64) value. Therefore, it is a common practice to pass
an integer value for the DateTime parameter.

Examples

// Format the date of x as a string and put it in varDate

varDate = FormatDate(x.Timestamp);

Math & Logic Help

Cyberlogic Technologies Inc. - 180 -

FormatTime

Formats a value of type DATETIME as a string containing the time in the local locale.

Syntax:

string FormatTime(DATETIME DateTime)

Where:

DateTime Date and time value.

Return value

Returns a string representing the time in the local locale.

Remarks

The time is always formatted according to the locale (language) for the system and
represents the local time, even if the DateTime variable was configured for the UTC time
zone.

When a DATETIME variable is accessed directly, it represents an OPC timestamp-
compatible 64-bit signed integer (int64) value. Therefore, it is a common practice to pass
an integer value for the DateTime parameter.

Examples

// Format the time of x as a string and put it in varTime

varTime = FormatTime(x.Timestamp);

Math & Logic Help

Cyberlogic Technologies Inc. - 181 -

GetTimeZoneOffset

Returns the local time zone offset from UTC (Coordinated Universal Time).

Syntax

double GetTimeZoneOffset()

Return value

Returns the local time zone offset in seconds.

Remarks

GetTimeZoneOffset uses the current settings for the time zone and daylight saving time.
Therefore, when daylight saving time is in effect, this function will take it into account.

Examples

// This program returns a string showing the GMT time,

// using the system locale settings

int dt; // Current local time

// Read current time

dt = TimeNow();

// Subtract the time zone offset

dt = AddSeconds(dt, -GetTimeZoneOffset());

// Format the output string using your current locale settings

return FormatDate(dt) + " " + FormatTime(dt);

Math & Logic Help

Cyberlogic Technologies Inc. - 182 -

TimeNow

Provides the current time.

Syntax

DATETIME TimeNow()

Return value

Returns a DATETIME-compatible UTC value that represents the current time.

Remarks

When a DATETIME variable is accessed directly, it represents an OPC timestamp-
compatible 64-bit signed integer (int64) value. Therefore, it is possible to assign the
result of this function directly to an int64 variable or to a timestamp property.

Examples

y.Timestamp = TimeNow(); // Change timestamp to current time

The Time in Your Time Zone #1 Sample Program and Two Sines Sample Program also
include examples of this function.

Math & Logic Help

Cyberlogic Technologies Inc. - 183 -

Variable Properties Functions

All C-logic variables include Error and Quality properties. The C-logic language includes
Error and OPC Quality functions, which simplify the interpretation of these properties.

The valid error code values are the same as the Microsoft HRESULT error codes. These
are 32-bit values with several fields encoded within the value. They can represent either
success or failure conditions.

The valid quality values are the same as the OPC Foundation quality codes. Refer to
Appendix B: OPC Quality Flags for information about OPC data quality.

The supported Error and OPC Quality functions are:

GetErrorString Returns the error string for a variable or constant

IsErrorFAILURE Determines if the error code of the argument is a failure

IsErrorSUCCESS Determines if the error code of the argument is a success

IsQualityBAD Determines if the quality is BAD

IsQualityGOOD Determines if the quality is GOOD

IsQualityUNCERTAIN Determines if the quality is UNCERTAIN

QualityLimitField Obtains the quality limit bits for a variable

QualityStatusCode Obtains the quality without limit bits for a variable

Math & Logic Help

Cyberlogic Technologies Inc. - 184 -

GetErrorString

Returns the error string for the Error code of the specified argument.

Syntax

string GetErrorString(Argument)

Where:

Argument Variable of any type, or constant.

Return value

Returns the error string associated with the Error code of Argument.

Remarks

The GetErrorString function uses the default system locale.

Examples

ErrorStr = GetErrorString(x);

Math & Logic Help

Cyberlogic Technologies Inc. - 185 -

IsErrorFAILURE

Determines if the Error code of the specified argument represents a failure.

Syntax

bool IsErrorFAILURE(Argument)

Where:

Argument Variable of any type, or constant.

Return value

Returns true if the Error property of Argument represents a failure.

Remarks

Negative Error property values indicate failure.

Examples

if(IsErrorFAILURE(x))

{

 return;

}

Math & Logic Help

Cyberlogic Technologies Inc. - 186 -

IsErrorSUCCESS

Determines if the Error code of the specified argument represents a success.

Syntax

bool IsErrorSUCCESS(Argument)

Where:

Argument Variable of any type, or constant.

Return value

Returns true if the Error property of Argument represents a success.

Remarks

Non-negative Error property values indicate success.

Examples

if(IsErrorSUCCESS(x))

{

 varX = x;

}

Math & Logic Help

Cyberlogic Technologies Inc. - 187 -

IsQualityBAD

Determines if the quality of the specified argument is BAD. (Refer to Appendix B: OPC
Quality Flags for information about OPC data quality.)

Syntax

bool IsQualityBAD(Argument)

Where:

Argument Variable of any type, or constant.

Return value

Returns true if the Quality property of Argument is BAD.

Remarks

The quality of a constant is always GOOD.

Examples

if(IsQualityBAD(x))

{

 varResult.Quality = QUALITY_SENSOR_FAILURE;

}

The Maintenance Time Tracking Sample Program also includes examples of how to test
the Quality property.

Math & Logic Help

Cyberlogic Technologies Inc. - 188 -

IsQualityGOOD

Determines if the quality of the specified argument is GOOD. (Refer to Appendix B: OPC
Quality Flags for information about OPC data quality.)

Syntax

bool IsQualityGOOD(Argument)

Where:

Argument Variable of any type, or constant.

Return value

Returns true if the Quality property of Argument is GOOD.

Remarks

The quality of a constant is always GOOD.

Examples

if(IsQualityGOOD(x))

{

 varX = x;

}

The Maintenance Time Tracking Sample Program also includes examples of how to test
the Quality property.

Math & Logic Help

Cyberlogic Technologies Inc. - 189 -

IsQualityUNCERTAIN

Determines if the quality of the specified argument is UNCERTAIN. (Refer to Appendix B:
OPC Quality Flags for information about OPC data quality.)

Syntax

bool IsQualityUNCERTAIN(Argument)

Where:

Argument Variable of any type, or constant.

Return value

Returns true if the Quality property of Argument is UNCERTAIN.

Remarks

The quality of a constant is always GOOD.

Examples

if(IsQualityUNCERTAIN(x))

{

 x.Quality = QUALITY_BAD; // Treat UNCERTAIN as BAD

}

The Maintenance Time Tracking Sample Program also includes examples of how to test
the Quality property.

Math & Logic Help

Cyberlogic Technologies Inc. - 190 -

QualityLimitField

Returns the limit bits of the quality for the selected variable. (Refer to Appendix B: OPC
Quality Flags for information about OPC data quality.)

Syntax

int QualityLimitField(Argument)

Where:

Argument Variable of any type, or constant.

Return value

Returns the limit bits of the quality for Argument.

Remarks

The operation performed by this function is equivalent to the following line of code:

Argument.Quality & 0x03;

The value returned by this function is typically used in comparisons to the following
Predefined Constants:

QUALITY_LIMIT_OK

QUALITY_LIMIT_LOW

QUALITY_LIMIT_HIGH

QUALITY_LIMIT_CONST

Examples

if(QualityLimitField(x) == LIMIT_HIGH)

{

 // Treat values at high limit as BAD

 x.Quality = QUALITY_BAD;

}

Math & Logic Help

Cyberlogic Technologies Inc. - 191 -

QualityStatusCode

Returns the quality with no limit bits for the specified argument. Refer to Appendix B:
OPC Quality Flags for information about OPC data quality.

Syntax

int QualityStatusCode(Argument)

Where:

Argument Variable of any type, or constant.

Return value

Returns the quality code with no limit bits for Argument.

Remarks

The operation performed by this function is equivalent to the following line of code:

Argument.Quality & 0xfc;

The value returned by this function is typically used in comparisons to the following
predefined constants:

QUALITY_GOOD
QUALITY_BAD
QUALITY_NOT_CONNECTED
QUALITY_SENSOR_FAILURE
QUALITY_COMM_FAILURE
QUALITY_WAITING_FOR_INITIAL_DATA
QUALITY_LAST_USABLE
QUALITY_EGU_EXCEEDED
QUALITY_LOCAL_OVERRIDE
QUALITY_CONFIG_ERROR
QUALITY_DEVICE_FAILURE
QUALITY_LAST_KNOWN
QUALITY_OUT_OF_SERVICE
QUALITY_UNCERTAIN
QUALITY_SENSOR_CAL
QUALITY_SUB_NORMAL

Examples

if(QualityStatusCode(x) == QUALITY_LAST_USABLE)

{

 // Treat QUALITY_LAST_USABLE as GOOD

 x.Quality = QUALITY_GOOD;

}

Math & Logic Help

Cyberlogic Technologies Inc. - 192 -

Other Functions

Additional functions are:

ArrayBounds Returns an array with the lower bound values for each array
dimension

ArrayDimElements Returns an array with the number of elements for each array
dimension

DebugOutput Sends a formatted data string to a debug output

GetFixedInterval Returns the fixed interval used for running the program

IndexSort Ranks array elements according to either ascending or descending
order

IsArray Determines if the Argument is an array

SetFixedInterval Sets the fixed interval for running the program to a specified value

Sort Sorts the input array as specified

Math & Logic Help

Cyberlogic Technologies Inc. - 193 -

ArrayBounds

Returns an array containing the lower-bound values for each dimension of a given array.

Syntax

int[] ArrayBounds(ArrayVariable)

Where:

ArrayVariable Array variable.

Return value

If ArrayVariable is an array, this function returns a one-dimensional int array containing
the lower bound values for each dimension of ArrayVariable. Otherwise, a runtime error
is generated. The returned array's lower bound is always zero.

Remarks

Currently, C-logic supports only one-dimensional arrays.

Examples

double Array[10];

var ArrayBounds;

ArrayBounds = ArrayBounds(Array);

x = ArrayBounds[0]; // x is set to 0

Math & Logic Help

Cyberlogic Technologies Inc. - 194 -

ArrayDimElements

Returns an array containing the number of elements for each dimension of a given array.

Syntax

int[] ArrayDimElements(ArrayVariable)

Where:

ArrayVariable Array variable.

Return value

If ArrayVariable is an array, this function returns a one-dimensional int array containing
the number of elements for each dimension of ArrayVariable. Otherwise, a runtime error
is generated. The returned array's lower bound is always zero.

Remarks

Currently, C-logic supports only one-dimensional arrays.

Examples

double Array[10];

var DimElements;

DimElements = ArrayDimElements(Array);

x = DimElements[0]; // x is set to 10

Math & Logic Help

Cyberlogic Technologies Inc. - 195 -

DebugOutput

Sends a formatted data string to the selected debug output.

Syntax

string DebugOutput(int OutputIndex, string FormatString [,Argument] ...)

Where:

OutputIndex Selects a debug output data item located in the ${Item
Name} folder, which is located in the same folder as the
program's data item. It must be an integer value in the
range of 0-99. The name of the debug output will be
"DebugOutputXX", where XX is the two-digit decimal
representation of OutputIndex.

FormatString Format-control string.

Argument ... Optional arguments of type string, sbyte, int16, int32,
int64, float, double, byte, uint16, uint32 or uint64.

Return value

Returns a copy of FormatString in which each format item has been replaced by the
string equivalent of the corresponding Argument.

Remarks

This function uses the same format-control string specification as the Format function
(Refer to Appendix C: Format Specification Fields for complete information on the format
specifications.)

However, in addition to returning a formatted string, it writes the string to the selected
debug output. The debug outputs are automatically created in the ${Item Name} folder,
which is located in the same folder as the program's data item. The number of debug
outputs depends on the number of OutputIndex values used in the program. The name
of a debug output is "DebugOutputXX", where XX is a two-digit decimal representation of
the corresponding OutputIndex. (The OutputIndex values 0-9 will have leading zeros
appended to them.)

Examples

DebugOutput(1, "Old value = %f", x);

The Using Debug Outputs Sample Program also includes examples of this function.

Math & Logic Help

Cyberlogic Technologies Inc. - 196 -

GetFixedInterval

Returns the value of the current fixed interval used for running the program.

Syntax

int GetFixedInterval()

Return Value

Returns the value of the fixed interval, in milliseconds, that is used to schedule program
execution. If the fixed interval is not defined, it returns 0.

Remarks

Each C-logic program can be statically configured to run at a fixed interval. (Refer to the
Settings Tab help for more information.) A program can also dynamically set or modify
this interval at runtime by calling the SetFixedInterval function. The GetFixedInterval
function returns the current setting for this interval.

Examples

x = GetFixedInterval();

The Maintenance Time Tracking Sample Program also includes examples of this function.

Math & Logic Help

Cyberlogic Technologies Inc. - 197 -

IndexSort

Ranks the elements of an array in ascending or descending order.

Syntax

int[] IndexSort(ArrayVariable)

int[] IndexSort(ArrayVariable, bool Descending)

int[] IndexSort(ArrayVariable, bool Descending, bool IgnoreCase)

Where:

ArrayVariable Array variable or string.

Descending A boolean expression indicating the ranking order. If
true, the descending order is used. If not specified, it
defaults to false.

IgnoreCase A boolean expression indicating whether case should be
taken into account when ranking string values. If true,
case is ignored and the ranking is case-insensitive. If not
specified, it defaults to false.

Return value

If ArrayVariable is a one-dimensional array or a string, the function returns an array of
indexes to ArrayVariable. Otherwise, it generates a runtime error.

The order of the returned indexes indicates the order of the elements of ArrayVariable if
they were sorted as specified.

Remarks

The returned array's lower bound is zero. The returned indexes incorporate
ArrayVariable's lower-bound value. Because C-logic allows strings to be viewed as arrays,
it is possible to rank a string. When ranking a string, the IgnoreCase parameter is valid.
Strings are always considered to have a lower-bound of zero, and so that is used for the
returned indexes.

Examples

int Array[3]({3,1,2});

var Ranking;

Ranking = IndexSort(Array); // Ranking = {1, 2, 0}

Ranking = IndexSort(Array, true); // Ranking = {0, 2, 1}

Math & Logic Help

Cyberlogic Technologies Inc. - 198 -

The Rank Machine Performance Sample Program also includes an example of this
function.

Math & Logic Help

Cyberlogic Technologies Inc. - 199 -

IsArray

Determines if the argument is an array.

Syntax

int IsArray(Argument)

Where:

Argument Variable of any type.

Return value

If Argument is an array, this function returns the number of dimensions in that array.
Otherwise, it returns 0.

Remarks

Currently, C-logic supports only one-dimensional arrays.

Examples

double Array[10]({0}); // Local array

int y; // Local variable

x = IsArray(Array); // Returns 1

x = IsArray(y); // Returns 0

Math & Logic Help

Cyberlogic Technologies Inc. - 200 -

SetFixedInterval

Sets the fixed interval for running the program to a specified value.

Syntax

int SetFixedInterval(int FixedInterval)

Where:

FixedInterval Specifies the fixed interval to be set. The value is in
milliseconds and must be in the range 0 - 4000000000.
A value of 0 disables the fixed interval execution.

Return Value

Returns the previous value of the fixed interval, in milliseconds, before the new
FixedInterval value was assigned. If the fixed interval was not defined, it returns 0.

Remarks

Each C-logic program can be statically configured to run at a fixed interval. (Refer to the
Settings Tab help for more information.) A program can also dynamically set or modify
this interval at runtime by calling the SetFixedInterval function. The program's data item
need not be statically configured to run at a fixed interval for the SetFixedInterval
function to succeed. Setting the interval to 0 disables the fixed interval execution.

Examples

SetFixedInterval(1000); // Set fixed interval execution to 1 sec

SetFixedInterval(0); // Disable fixed interval execution

The Maintenance Time Tracking Sample Program also includes examples of this function.

Math & Logic Help

Cyberlogic Technologies Inc. - 201 -

Sort

Sorts the input array as specified.

Syntax

SortedArray Sort(ArrayVariable)

SortedArray Sort(ArrayVariable, bool Descending)

SortedArray Sort(ArrayVariable, bool Descending, bool IgnoreCase)

Where:

ArrayVariable Array variable or string.

Descending A boolean expression indicating the sort order. If true,
the descending order is used. If not specified, it defaults
to false.

IgnoreCase A boolean expression indicating whether case should be
taken into account when sorting string values. If true,
case is ignored and the sort is case-insensitive. If not
specified, it defaults to false.

Return value

If ArrayVariable is a single-dimensional array, it returns a sorted array. If ArrayVariable is
a string, it returns a string. Otherwise, a runtime error is generated.

Remarks

The returned array's lower bound matches the lower bound of the original ArrayVariable.
Because C-logic allows strings to be viewed as arrays, it is possible to sort a string. When
sorting a string, the IgnoreCase parameter is valid.

Examples

int Array[3]({3,1,2});

var Sorted;

Sorted = Sort(Array); // Sorted = {1, 2, 3}

Sorted = Sort(Array, true); // Sorted = {3, 2, 1}

Math & Logic Help

Cyberlogic Technologies Inc. - 202 -

APPENDIX B: OPC QUALITY FLAGS

The quality flags represent the quality state of the item's data value. It is similar to the
Fieldbus Data Quality Specification (section 4.4.1 in the H1 Final Specifications). This
makes it easy for both servers and client applications to determine how much
functionality they want to implement.

The low eight bits of the Quality flags are defined in the form of three bit fields; Quality,
Substatus and Limit status. The Quality bits are arranged as follows:

 QQSSSSLL

The high eight bits of the Quality Word are available for vendor-specific use. If these bits
are used, the standard OPC Quality bits must still be set as accurately as possible to
indicate what assumptions the client can make about the returned data. In addition, it is
the responsibility of any client interpreting vendor specific quality information to ensure
that the server providing it uses the same rules as the client. The details of such a
negotiation are not specified in this standard, although a QueryInterface call to the
server for a vendor specific interface such as IMyQualityDefinitions is a possible
approach.

The following sections provide details of the OPC standard quality bits.

The Quality Bit Field

QQ Bit Value Definition Description

0 00SSSSLL Bad Value is not useful for the reasons
indicated by the Substatus.

1 01SSSSLL Uncertain The quality of the value is uncertain for
the reasons indicated by the Substatus.

2 10SSSSLL N/A Not used by OPC

3 11SSSSLL Good The quality of the value is good.

A server which supports no quality information must return 3 (Good). It is also
acceptable for a server to simply return Bad or Good (0x00 or 0xC0), and to always
return 0 for Substatus and Limit.

Clients should check the Quality bit field of all results, even if they do not check the
Substatus or Limit fields.

The contents of the Value field must be a well-defined VARIANT even if the Quality is
BAD, indicating that it does not contain an accurate value. This simplifies error handling
in client applications. For example, clients are always expected to call VariantClear() on
the results of a Synchronous Read. Similarly the IAdviseSink must be able to interpret
and unpack the Value and Data included in the Stream, even if that data is BAD.

Math & Logic Help

Cyberlogic Technologies Inc. - 203 -

If the server has no known value to return, then it must return a reasonable default
value, such as a NUL string or a 0 numeric value.

The Substatus Bit Field

The layout of this field depends on the value of the Quality Field.

Substatus for BAD Quality:

SSSS Bit Value Definition Description

0 000000LL Non-specific The value is bad but no specific reason is
known.

1 000001LL Configuration Error There is some server-specific problem
with the configuration. For example, the
item in question has been deleted from
the configuration.

2 000010LL Not Connected The input is required to be logically
connected to something, but it is not.
This quality may reflect that no value is
available at this time, for reasons such as
the value not having been provided by
the data source.

3 000011LL Device Failure A device failure has been detected.

4 000100LL Sensor Failure A sensor failure had been detected. The
Limits field can provide additional
diagnostic information in some
situations.

5 000101LL Last Known Value Communications have failed, but the
last-known value is available. The age of
the value may be determined from the
TIMESTAMP in the OPCITEMSTATE.

6 000110LL Comm Failure Communications have failed. There is no
available last-known value.

7 000111LL Out of Service The block is off scan or otherwise locked.
This quality is also used when the active
state of the item, or the group containing
the item, is InActive.

8-15 N/A Not used by OPC.

Servers that do not support Substatus should return 0. Note that an old value may be
returned with the Quality set to BAD (0) and the Substatus set to 5. This is for
consistency with the Fieldbus Specification. This is the only case in which a client may
assume that a BAD value is still usable by the application.

Math & Logic Help

Cyberlogic Technologies Inc. - 204 -

Substatus for UNCERTAIN Quality:

SSSS Bit Value Define Description

0 010000LL Non-specific There is no specific reason why the value
is uncertain.

1 010001LL Last Usable Value Whatever was writing this value has
stopped doing so. The returned value
should be regarded as stale. The age of
the value can be determined from the
TIMESTAMP in OPCITEMSTATE.

Note that this differs from a BAD value
with Substatus 5 (Last Known Value).
That status is associated specifically with
a detectable communications error on a
fetched value. This error is associated
with the failure of some external source
to put something into the value within an
acceptable period of time.

2-3 N/A Not used by OPC

4 010100LL Sensor Not Accurate Either the value is pegged at one of the
sensor limits (in which case the limit field
should be set to 1 or 2), or the sensor's
internal diagnostics have indicated that it
is out of calibration (in which case the
limit field should be 0).

5 010101LL Engineering Units
Exceeded

The returned value is outside the limits
defined for this parameter. Note that in
this case (per the Fieldbus Specification)
the Limits field indicates which limit has
been exceeded but does not necessarily
imply that the value cannot move farther
out of range.

6 010110LL Sub-Normal The value is derived from multiple
sources and has less than the required
number of Good sources.

7-15 N/A Not used by OPC.

Servers that do not support Substatus should return 0.

Math & Logic Help

Cyberlogic Technologies Inc. - 205 -

Substatus for GOOD Quality:

SSSS Bit Value Define Description

0 110000LL Non-specific The value is good. There are no special
conditions.

1-5 N/A Not used by OPC.

6 110110LL Local Override The value has been Overridden. Typically
this is means the input has been
disconnected and a manually entered value
has been forced.

7-15 N/A Not used by OPC.

Servers that do not support Substatus should return 0.

The Limit Bit Field

The Limit Field is valid regardless of the Quality and Substatus. In some cases, such as
Sensor Failure, it can provide useful diagnostic information.

SSSS Bit Value Define Description

0 QQSSSS00 Not Limited The value is free to move up or down.

1 QQSSSS01 Low Limited The value has pegged at some low limit.

2 QQSSSS10 High Limited The value has pegged at some high limit.

3 QQSSSS11 Constant The value is a constant and cannot move.

Servers that do not support Limit should return 0.

Math & Logic Help

Cyberlogic Technologies Inc. - 206 -

APPENDIX C: FORMAT SPECIFICATION FIELDS

The first parameter in the Format function specifies a format specification. It consists of
optional and required fields, and has the following form:

%[flags] [width] [.precision] [{h | w | l | L | ll | I | I32 | I64}]type

Each field of the format specification is a single character or a number signifying a
particular format option. The simplest format specification contains only the percent sign
and a type character (for example, %s). If a percent sign is followed by a character that
has no meaning as a format field, the character is copied as is. For example, to include a
percent-sign character in the output string, use %%.

The optional fields, which appear before the type character, control other aspects of the
formatting, as follows:

flags

These are optional characters that control justification of output and treatment of signs,
blanks, decimal points, and octal and hexadecimal prefixes. Refer to the flag characters
table in the Flag Directives section for a list and definitions. More than one flag can
appear in a format specification.

width

This is an optional number that specifies the minimum number of characters output.
Refer to the Width Specification section for details.

precision

This is an optional number that specifies the maximum number of characters output for
all or part of the output field, or the minimum number of digits output for integer values.
For details, refer to the table in the Precision Specification section.

h | w | l | L | ll | I | I32 | I64

These are optional prefixes to type that specify the size of the argument. Refer to the
prefixes table in Size and Distance Specification.

type

Required character that determines whether the associated argument is interpreted as a
character, a string, or a number. Refer to the table in Type Field Characters for details.

Flag Directives

The first optional field of the format specification is flags. A flag directive is a character
that justifies output and controls the output of signs, blanks, decimal points, and octal
and hexadecimal prefixes. More than one flag directive may appear in a format
specification.

Math & Logic Help

Cyberlogic Technologies Inc. - 207 -

Flag Meaning Default

– Left align the result within the given field width. Right align.

+ Prefix the output value with a sign (+ or –) if the
output value is of a signed type.

Sign appears only for
negative signed values
(–).

0 If width is prefixed with 0, zeros are added until
the minimum width is reached. If 0 and –
appear, the 0 is ignored. If 0 is specified with an
integer format (i, u, x, X, o, d) and a precision
specification is also present (for example,

%04.d), the 0 is ignored.

No padding.

blank
(' ')

Prefix the output value with a blank if the output
value is signed and positive. The blank is ignored
if both the blank and + flags appear.

No blank appears.

When used with the o, x, or X format, the # flag
prefixes any nonzero output value with 0, 0x, or
0X, respectively.

No prefix appears.

 When used with the e, E, f, a or A format, the #
flag forces the output value to contain a decimal
point in all cases.

Decimal point appears
only if digits follow it.

 When used with the g or G format, the # flag
forces the output value to contain a decimal
point in all cases and prevents the truncation of
trailing zeros.

Decimal point appears
only if digits follow it.
Trailing zeros are
truncated.

 Ignored when used with c, d, i, u, or s.

Width Specification

The width specification is a nonnegative decimal integer that controls the minimum
number of characters output.

If the number of characters in the output value is less than the specified width, blanks
are added until the minimum width is reached. If the "–" (left alignment) flag is specified,
the blanks are appended to the right of the value; otherwise, they are appended to the
left. If width is prefixed with 0, zeros are added until the minimum width is reached.

The width specification never causes a value to be truncated. If the number of characters
in the output value is greater than the specified width, or if width is not specified, all
characters of the value are output, subject to the precision specification.

Math & Logic Help

Cyberlogic Technologies Inc. - 208 -

Precision Specification

The precision specification indicates the number of characters to be output, the number
of decimal places, or the number of significant digits. It is a nonnegative decimal integer,
preceded by a period (.). Refer to the table for details on how the precision specification
is used with each data type.

Unlike the width specification, the precision specification can cause either truncation of
the output value or rounding of a floating-point value. If precision is specified as 0 and
the value to be converted is 0, the result is no characters output, as shown below:

Format("%.0d", 0); // No characters output

The type determines the interpretation of precision, and the default when precision is
omitted, as shown in the following table.

Type Meaning Default

a, A The precision specifies the number of digits
after the point.

Default precision is 6. If
precision is 0, no point is
output unless the # flag is
used.

c, C The precision has no effect. Character is output.

d, i, u, o,
x, X

The precision specifies the minimum
number of digits to be output. If the
number of digits in the argument is less
than precision, the output value is padded
on the left with zeros. The value is not
truncated when the number of digits
exceeds precision.

Default precision is 1.

e, E The precision specifies the number of digits
to be output after the decimal point. The
last output digit is rounded.

Default precision is 6; if
precision is 0 or the
period (.) appears without
a number following it, no
decimal point is output.

f The precision value specifies the number of
digits after the decimal point. If a decimal
point appears, at least one digit appears
before it. The value is rounded to the
appropriate number of digits.

Default precision is 6; if
precision is 0, or if the
period (.) appears without
a number following it, no
decimal point is output.

g, G The precision specifies the maximum
number of significant digits output.

Six significant digits are
output, with any trailing
zeros truncated.

s, S The precision specifies the maximum
number of characters to be output.
Characters in excess of precision are not
output.

Characters are output
until a null character is
encountered.

Math & Logic Help

Cyberlogic Technologies Inc. - 209 -

If the argument corresponding to a floating-point specifier is infinite, indefinite, or NAN,
Format gives the following output.

Value Output

+ infinity 1.#INFrandom-digits

– infinity –1.#INFrandom-digits

Indefinite (same as quiet NAN) digit.#INDrandom-digits

NAN digit.#NANrandom-digits

Size and Distance Specification

The optional prefixes to type, h, l, I, I32, I64 and ll specify the size of the argument
(long or short, 32- or 64-bit, single-byte character or wide character, depending upon the
type specifier that they modify). These type-specifier prefixes are used with type
characters in the Format function to specify interpretation of arguments, as shown in the
following table.

Math & Logic Help

Cyberlogic Technologies Inc. - 210 -

To specify Use prefix With type specifier

int32 l (lowercase L) d or i

uint32 l o, u, x, or X

int64 ll d, i, o, x, or X

int16 h d or i

uint16 h o, u, x, or X

int32 I32 d or i

uint32 I32 o, u, x, or X

int64 (int) I64 d or i

uint64 I64 o, u, x, or X

int32 I d or i

uint32 I o, u, x, or X

double l or L f

sbyte h c or C

int16 l c or C

string l s or S

int16 w c

string w s

Thus to output single-byte or wide-characters with Format function, use format specifiers
as follows.

To output character as With format specifier

single byte C, hc, or hC

wide c, lc, lC, or wc

Math & Logic Help

Cyberlogic Technologies Inc. - 211 -

Type Field Characters

The type character is the only required format field; it appears after any optional format
fields. The type character determines whether the associated argument is interpreted as
a character, string, or number.

Character Type Output format

c int16 Specifies a wide character.

C sbyte Specifies a single-byte character.

d int32 Signed decimal integer.

i int32 Signed decimal integer.

o uint32 Unsigned octal integer.

u uint32 Unsigned decimal integer.

x uint32 Unsigned hexadecimal integer, using "abcdef".

X uint32 Unsigned hexadecimal integer, using "ABCDEF".

e double Signed value having the form [–]d.dddd e [sign]ddd where d is a

single decimal digit, dddd is one or more decimal digits, ddd is
three decimal digits, and sign is + or –.

E double Identical to the e format except that E rather than e introduces the
exponent.

f double Signed value having the form [–]dddd.dddd, where dddd is one
or more decimal digits. The number of digits before the decimal
point depends on the magnitude of the number, and the number of
digits after the decimal point depends on the requested precision.

g double Signed value output in f or e format, whichever is more compact for
the given value and precision. The e format is used only when the
exponent of the value is less than –4 or greater than or equal to the
precision argument. Trailing zeros are truncated, and the decimal
point appears only if one or more digits follow it.

G double Identical to the g format, except that E, rather than e, introduces
the exponent (where appropriate).

Math & Logic Help

Cyberlogic Technologies Inc. - 212 -

a double Signed hexadecimal double precision floating point value having the
form [−]0xh.hhhh p±ddd, where h.hhhh are the hex digits (using

lower case letters) of the mantissa, and ddd are three digits for the
exponent. The precision specifies the number of digits after the
point.

A double Signed hexadecimal double precision floating point value having the
form [−]0Xh.hhhh P±ddd, where h.hhhh are the hex digits (using

upper case letters) of the mantissa, and ddd are three digits for the
exponent. The precision specifies the number of digits after the
point.

s string Specifies a wide-character string. Characters are output up to the
first null character or until the precision value is reached.

S string Specifies a wide-character string. Characters are output up to the
first null character or until the precision value is reached.

Note All exponential formats use three digits in the exponent.

Math & Logic Help

Cyberlogic Technologies Inc. - 213 -

APPENDIX D: SAMPLE PROGRAMS

All Cyberlogic OPC servers include a configuration file with a set of sample C-logic
programs. These will help you to understand how the various functions work. They will
also give you ideas about what you can do with C-logic, and they can be modified and
used in creating your own programs.

In this appendix, we will discuss some of these programs. For additional sample
programs, refer to the Math & Logic Sample Configuration.mdb file.

The programs in this appendix are:

 ABC to abc Sample Program

 Maintenance Time Tracking Sample Program

 Rank Machine Performance Sample Program

 Linear Conversion Sample Program

 Square Root Conversion Sample Program

 Array to Date & Time Sample Program

 Time in Your Time Zone #1 Sample Program

 Using Debug Outputs Sample Program

 Two Sines Sample Program

ABC to abc Sample Program

//===

// ABC to abc

//===

// Description:

// In C-logic, a string variable can be viewed as an array of

// characters. This program demonstrates how you can modify a

// string using array notation.

//

// An Input string is searched for the occurrence of the

// uppercase string "ABC". If found, the uppercase "ABC" is

// replaced with a lowercase "abc" by replacing individual

// characters in the string.

//

//===

public string Input; // Input string

string s; // Local string variable

VAR index; // Array index

// Copy the input string to a local variable

s = Input;

// See if the input string contains an uppercase "ABC"

index = IndexOf(s, "ABC");

Math & Logic Help

Cyberlogic Technologies Inc. - 214 -

if(index >= 0)

{

 // Replace uppercase "ABC" with lowercase "abc"

 s[index] = 'a';

 s[index+1] = 'b';

 s[index+2] = 'c';

}

return s;

Maintenance Time Tracking Sample Program

//===

// Maintenance Time Tracking

//===

// Description:

// Most industrial machines require maintenance after a certain

// number of hours of operation. This program can be used to

// track the operation time, and schedule maintenance when the

// operation time reaches the maintenance due time.

//

// The program uses two inputs: a Reset and Input. When the Reset

// input is OFF and the Input is ON, the TotalTime accumulates

// the operation time. When the TotalTime reaches the

// WarningLevel, the Warning output is set. When the TotalTime

// reaches the MaintDueTime, the MaintDue output is set. When the

// Reset input is ON, all boolean outputs are turned OFF, and the

// TotalTime is reset to zero.

//

// Notes:

// This program demonstrates the use of the SetFixedInterval

// function, which allows scheduling of program execution at a

// fixed interval.

//

// In this implementation, the program's output is the same as

// the machine total time value (TotalTime). The program can

// easily be modified to return a different signal (e.g. MaintDue

// flag).

//

// To use a different data input, replace Item ID in the "ITEM

// Input" declaration.

//===

ITEM Input (".Input"); // Data input

const WarningPercent(90.); // Warning level

as percent of the MaintDueTime

public double MaintDueTime(100.); // Maintenance

due time in hours

public bool Reset(true); // Reset input

public bool Active(false,true,,,true); // Active output

(Init false, Disable writes, Exclude from OnDataChange trig)

public bool Warning(false,true,,,true); // ToolDue output

(Init false, Disable writes, Exclude from OnDataChange trig)

Math & Logic Help

Cyberlogic Technologies Inc. - 215 -

public bool MaintDue(false,true,,,true); // MaintDue

output (Init false, Disable writes, Exclude from OnDataChange

trig)

public bool LastInput(false,true,,,true); // The last state

of the input (Init false, Disable writes, Exclude from

OnDataChange trig)

public double TotalTime(0.0,,,,true); // Total time

public double CycleStartTime(0.0,true,,,true); // Current cycle

start time

public double CycleTime(0.0,true,,,true); // Current cycle

time

double WarningLevel;

double TimeInHours;

var Temp;

// See if counter needs to be reset

if(Reset)

{

 // Reset

 LastInput = false;

 Active = false;

 MaintDue = false;

 Warning = false;

 TotalTime = 0.0;

 CycleStartTime = 0.0;

 CycleTime = 0;

 // Force recalculation of WarningLevel

 // when the counting starts

 WarningLevel.Quality = QUALITY_BAD;

 // Disable timer execution

 SetFixedInterval(0);

 return 0;

}

if(Input || LastInput)

{

 // Convert 100-nanosecond ticks to hours

 TimeInHours = TimeNow() / 36000000000.0;

 // See if Input transitioned from OFF to ON

 if(!LastInput)

 {

 // Save last input value

 LastInput = Input;

 CycleStartTime = TimeInHours;

 SetFixedInterval(100);

 }

 // Calculate current TotalTime

 Temp = TotalTime - CycleTime;

 CycleTime = TimeInHours - CycleStartTime;

Math & Logic Help

Cyberlogic Technologies Inc. - 216 -

 TotalTime = Temp + CycleTime;

 if(IsQualityBAD(WarningLevel))

 // Calculate warning level only once

 WarningLevel = WarningPercent * MaintDueTime / 100.0;

 // See if we exceeded the warning level

 if(TotalTime >= WarningLevel)

 Warning = true;

 // See if we exceeded the tool change time

 if(TotalTime >= MaintDueTime)

 MaintDue = true;

 // See if the cycle ended

 if(!Input)

 {

 // Save last input value

 LastInput = Input;

 // Disable timer execution

 SetFixedInterval(0);

 CycleTime = 0;

 }

 return TotalTime;

}

if(GetFixedInterval())

 // Disable timer execution

 SetFixedInterval(0);

// Don't change the output

return;

Rank Machine Performance Sample Program

//===

// Rank Machine Performance

//===

// Description:

// In a typical manufacturing operation, you may have a number of

// identical machines, and you may want to know which one of them

// is the slowest, and therefore requiring some extra attention

// or maintenance. Or maybe you are keeping track of machine

// cycles until maintenance due for multiple machines, and you

// want to know which machine will require maintenance first.

//

// This program demonstrates the use of the IndexSort function,

// which allows you to rank values in an array in order of

// highest to lowest or lowest to highest. In the example here,

// when the Hold input is low (false), the values in the

// InputArray are ranked from lowest to highest. When the Hold

// input is high (true), the last ranking is preserved, and the

// Holding output is turned On.

Math & Logic Help

Cyberlogic Technologies Inc. - 217 -

//

// Notes:

// To use a different input array, replace Item ID in the "ITEM

// InputArray" declaration.

//===

ITEM InputArray (".Input Array"); // Input array

public bool Hold(false); // Hold input

public bool Holding(false,true,,,true); // Holding output

(Init false, Disable writes, Exclude from OnDataChange trig)

if(Hold)

{

 // Turn the Holding output ON

 Holding = true;

 // Do not change the output

 return;

}

if(Holding)

 // Turn the Holding output OFF

 Holding = false;

// Rank the input array

return IndexSort(InputArray);

Linear Conversion Sample Program

//===

// Linear Conversion

//===

// Notes:

// To use a different data input, replace Item ID in the "ITEM x"

// declaration.

//

// To change LowIR, HighIR, LowEU, HighEU, LowClamp, or

// HighClamp, modify the values assigned to these constants.

//===

ITEM x (".Input"); // Instrument data

const LowIR(0.0); // Low instrument range

const HighIR(4095.0); // High instrument range

const LowEU(0.0); // Low engineering units range

const HighEU(100.0); // High engineering units range

const LowClamp(0.0); // Low clamping range

const HighClamp(100.0); // High clamping range

double Result; // Conversion result

// Convert from instrument to EU range

Result = (x - LowIR)/(HighIR - LowIR)*(HighEU - LowEU) + LowEU;

// Check the clamping limits

Math & Logic Help

Cyberlogic Technologies Inc. - 218 -

if (Result < LowClamp)

{

 Result = LowClamp;

 // Set the limit field to Low Limited

 Result.Quality = QualityStatusCode(Result) |

QUALITY_LIMIT_LOW;

}

else if (Result > HighClamp)

{

 Result = HighClamp;

 // Set the limit field to High Limited

 Result.Quality = QualityStatusCode(Result) |

QUALITY_LIMIT_HIGH;

}

return Result;

Square Root Conversion Sample Program

//===

// Square Root Conversion

//===

// Notes:

// To use a different data input, replace Item ID in the "ITEM x"

// declaration.

//

// To change LowIR, HighIR, LowEU, HighEU, LowClamp, or

// HighClamp, modify the values assigned to these constants.

//===

ITEM x (".Input"); // Instrument data

const LowIR(0.0); // Low instrument range

const HighIR(4095.0); // High instrument range

const LowEU(0.0); // Low engineering units range

const HighEU(100.0); // High engineering units range

const LowClamp(0.0); // Low clamping range

const HighClamp(100.0); // High clamping range

double SqrtArg; // Sqrt function argument

double Result; // Conversion result

SqrtArg = (x - LowIR)/(HighIR - LowIR);

if(SqrtArg < 0.0)

{

 Result.Quality = QUALITY_SENSOR_FAILURE;

 return Result;

}

// Convert from instrument to EU range

Result = sqrt(SqrtArg)*(HighEU - LowEU) + LowEU;

// Check the clamping limits

if (Result < LowClamp)

{

Math & Logic Help

Cyberlogic Technologies Inc. - 219 -

 Result = LowClamp;

 // Set the limit field to Low Limited

 Result.Quality = QualityStatusCode(Result) |

QUALITY_LIMIT_LOW;

}

else if (Result > HighClamp)

{

 Result = HighClamp;

 // Set the limit field to High Limited

 Result.Quality = QualityStatusCode(Result) |

QUALITY_LIMIT_HIGH;

}

return Result;

Array to Date & Time Sample Program

//===

// Array to Date & Time

//===

// Description:

// This program accepts the date and time information in the form

// of an array of date and time properties, and returns a string

// representing the provided date and time in the local locale.

//

// Notes:

//

//===

public VT_UI2 Array[8]({2010,1,1,1}); // Date & Time

properties array

DATETIME dt;

dt.Year = Array[0];

dt.Month = Array[1];

//dt.DayOfWeek = Array[2]; // Ignore the DayOfWeek (must

be valid, but the value is irrelevant)

dt.Day = Array[3];

dt.Hour = Array[4];

dt.Minute = Array[5];

dt.Second = Array[6];

dt.Milliseconds = Array[7];

return FormatDate(dt) + " " + FormatTime(dt);

Time in Your Time Zone #1 Sample Program

//===

// Time in Your Time Zone #1

//===

// Description:

// This program returns a string that represents the current date

Math & Logic Help

Cyberlogic Technologies Inc. - 220 -

// and time in the selected time zone.

//

// Notes:

// This program formats the output string by using the Format

// function with the date and time properties as arguments.

// Notice, that the resulting string does not depend on your

// system's locale (language) setting.

//===

DATETIME dt(UTC); // Current UTC time

// ZoneOffsetInHrs is public so that an external program can

// write the desired offset to it

public double ZoneOffsetInHrs(0.); // Time zone offset in hours

// Read current time

dt = TimeNow();

// Add time zone offset

dt = AddSeconds(dt, ZoneOffsetInHrs * 3600.);

// Format the output string using the date & time properties

return Format("Your time: %d/%d/%d %d:%d:%d\n", dt.Month, dt.Day,

dt.Year, dt.Hour, dt.Minute, dt.Second);

Using Debug Outputs Sample Program

//===

// Using Debug Outputs

//===

// Description:

// This program demonstrates the use of the DebugOutput function

// as one of the debugging techniques.

//

// The DebugOutput function allows you to format an output string

// in the same way the Format function does. However, in addition

// to returning a formatted string, it writes the string to the

// selected debug output. The debug outputs are automatically

// created in the folder associated with the program's data item.

// The number of debug outputs depends on the number of

// OutputIndex values used in the program. The name of a debug

// output is "DebugOutputXX", where XX is a two-digit decimal

// representation of the corresponding OutputIndex. (The

// OutputIndex values 0-9 will have leading zeros appended to

// them.)

//

// While debugging your program, you place the DebugOutput

// function calls throughout your program. This allows you to

// monitor the state of internal variables, see which program

// paths are being executed, etc. Once you get your program

// working as expected, the DebugOutput calls can be removed or

// commented out.

//

// Notes:

//

//===

Math & Logic Help

Cyberlogic Technologies Inc. - 221 -

public double x(0.0); // Input data

double y(0.0); // Local variable y

DebugOutput(1, "Old value = %f", x);

if(x >= 0.0)

{

 y = x * 100.0;

 DebugOutput(2, "New value = %f", y);

}

else

{

 y = x - 200;

 DebugOutput(3, "New value = %f", y);

}

return y;

Two Sines Sample Program

//===

// Two Sines

//===

// Mathematically, the sine function takes values between -1 and

// +1. This means that the value will vary both above and below

// the level set by the offset. Therefore, this is the only

// function for which the Offset parameter specifies the middle

// of the range, rather than the bottom. In addition, this is the

// only function for which the Amplitude parameter does not

// specify the peak-to-peak range of values.

//

// Notes:

// This program is similar to the Sine program, but it generates

// two sine waves shifted in phase. The output of the first sine

// (SineA) is sent to this data item's output, while the second

// sine wave is sent to the public variable called SineB.

//

// To change Offset, Amplitude, Period, or Phase, modify the

// values assigned to these constants.

//===

const OffsetA(0.0); // Fixed offset for Sine A waveform

const OffsetB(0.0); // Fixed offset for Sine B waveform

const AmplitudeA(100.0); // Peak value for Sine A, measured

from the offset level

const AmplitudeB(100.0); // Peak value for Sine B, measured

from the offset level

const PhaseA(0.0); // Phase shift in radians for Sine A

const PhaseB(1.5707963267948966192313216916395);// Phase shift in

radians for Sine B (pi/2.0)

const Period(100.0); // Period in seconds

public double SineB(,,,,true); // Sine B output

double TimeInSeconds; // Time in seconds

double AngleBase;

Math & Logic Help

Cyberlogic Technologies Inc. - 222 -

// Convert 100-nanosecond ticks to seconds

TimeInSeconds = TimeNow() / 10000000.0;

AngleBase = TimeInSeconds*2.0*PI/Period;

SineB = OffsetB + sin(AngleBase + PhaseB)*AmplitudeB;

return OffsetA + sin(AngleBase + PhaseA)*AmplitudeA;

